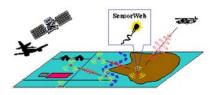


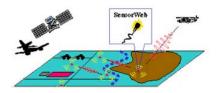
Stability and resource allocation

Tommi S. Jaakkola MIT AI Lab SensorWeb MURI Review Meeting June 14, 2002



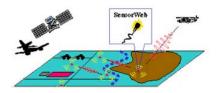
Research topics

- Inference in large sensor networks (with M. Wainwright and A. Willsky); IT 1, RCA 5
- Robust combination of information sources (with A. Corduneanu); IT 1&2, RCA 5 (& 6)
- Competitive estimation (with A. Corduneanu); IT 1&2, RCA 5
- Scalable information acquisition (with H. Siegelman); IT 2, RCA 4&5



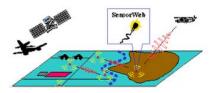
Outline of the talk

- Stability and source allocation
 - Robust combination of information from heterogeneous sources
 - Extension to competitive estimation (adversarial context)
- Resource allocation
 - Efficient acquisition of information through a limited information channel



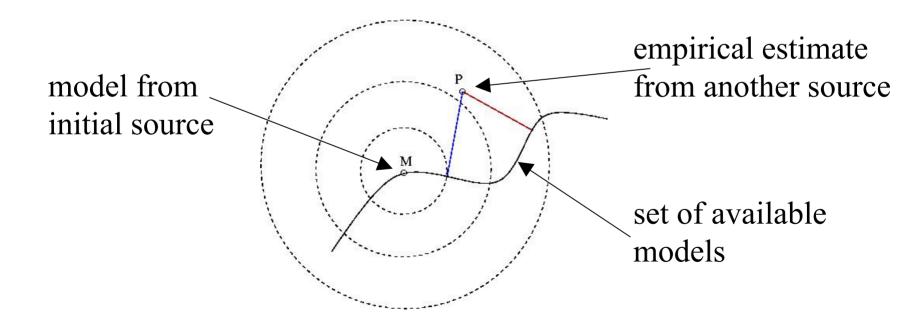
Part I: source allocation

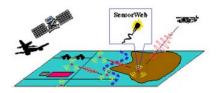
- Heterogeneous sensors (e.g., acoustic and infrared) yield complementary views
 - How much do we rely on each source?
 - How do we resolve conflicts among the data sources?
 - How do we ensure that the estimation process remains stable?

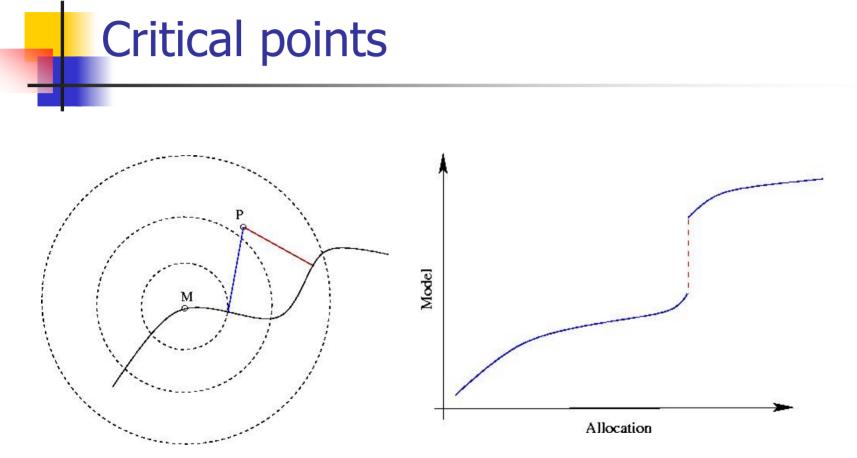


The problem

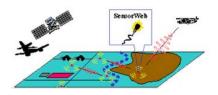
Estimation with heterogeneous sources is inherently unstable







The critical points appear almost surely as jumps, not as bifurcations



Example settings

 The stability issue affects all estimation methods reducible to fixed point computations

Example: estimation with incomplete data

empirical estimates

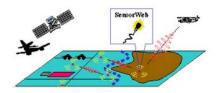
- Model Q(x,y)
- Complete data log-likelihood: $D(\hat{P}_c(x,y)||Q(x,y))$
- Incomplete data log-likelihood: $D(\hat{P}_I(x) || Q(x))$
- Estimation criterion:

$$J(Q,\lambda) = (1-\lambda)D(\hat{P}_c(x,y)||Q(x,y)) + \lambda D(\hat{P}_I(x)||Q(x))$$

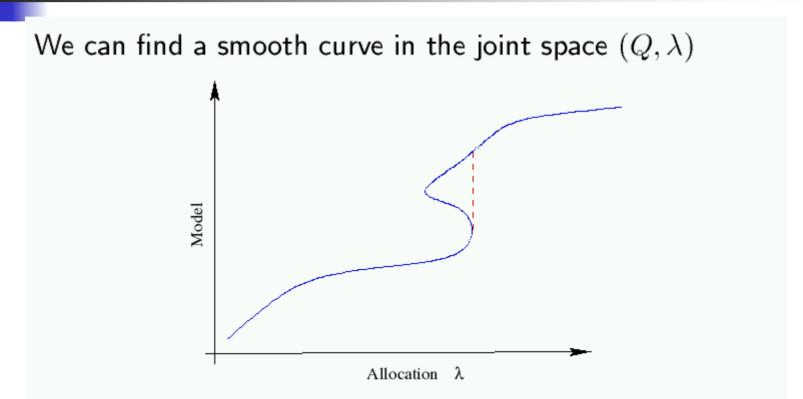
allocation

Fixed point equation: $abla_Q J(Q,\lambda) = 0$

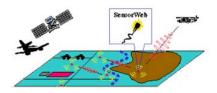
parameter



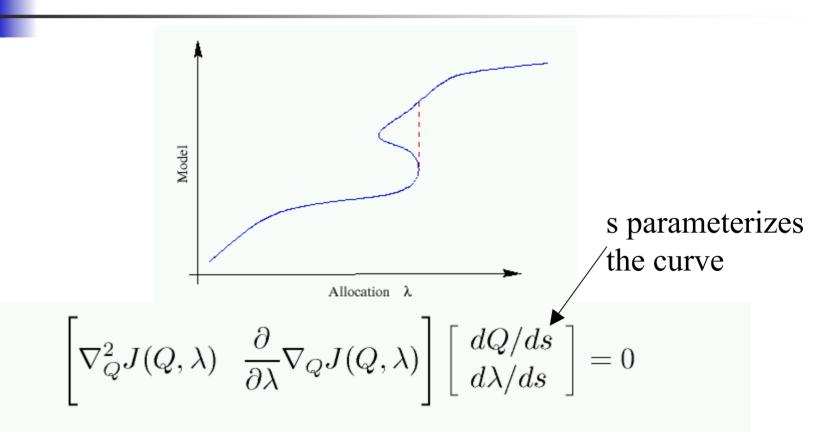
Stable identification of critical points



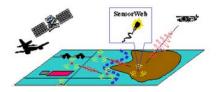
Provided that the Jacobian of $T(Q, \lambda) = \nabla_Q J(Q, \lambda)$ has full rank, $T(Q, \lambda) = 0$ defines a smooth 1-dim manifold in the joint space (Q, λ) .



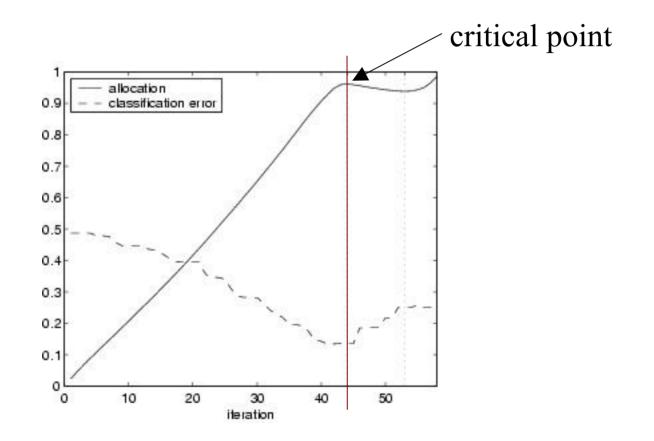
Homotopy continuation

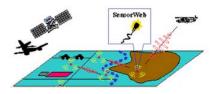


Each point along the curve necessarily satisfies the fixed point condition $\nabla_Q J(Q, \lambda) = 0$



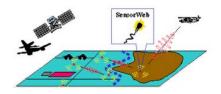
Typical results





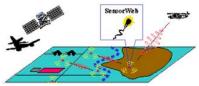
Summary of part I

- Data fusion is often unstable
- We can restore stability by identifying and avoiding critical points
 - homotopy continuation provides an efficient way of identifying stable data allocations
 - the methodology is applicable for most estimation settings

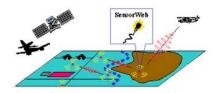


Extension: competitive estimation

- Estimation/decisions often have to be made in an adversarial context
- Robust decisions can be found with competitive (game theoretic) estimation

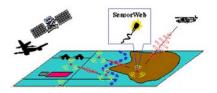


Competition, solution Two interpretations, two criteria $\max_{R} \min_{Q} \quad \text{Loss}(Q, R) - \text{Loss}(Q)$ loss resulting from adversary interaction decision $\min_{Q} \max_{R} \left| \operatorname{Loss}(Q, R) - \operatorname{Loss}(R) \right|$ maker homotopy continuation applies as before critical points arise as before (but can desirable in this context)



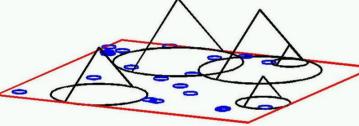
Part II: resource allocation

- The problem here is information acquisition (e.g., locating assets) with minimal resources
- The key question is how the available resources should be used/allocated
- Technical components:
 - sensor models
 - information channel
 - beliefs and inference (scalability)

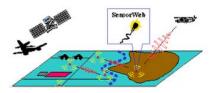


The framework

Model:

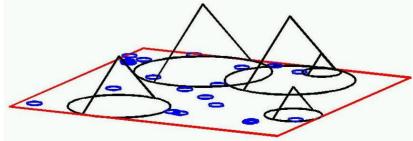


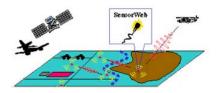
- Multi-resolution sensors
 - response model
- Limited information channel
 - number of sensors that can be queried in parallel
- Processing
 - maintaining beliefs
 - query optimization
- Key requirement: scalability



Sensors

- The sensors are assumed to appropriately cover the domain (identifiability)
- Characteristics of sensors (detectors)
 - static or dynamic definition
 - resolution, sensitivity
 - cumulative detection
- Sensor responses are captured by the detection probabilities P(y = 1|r)





Beliefs, expected response

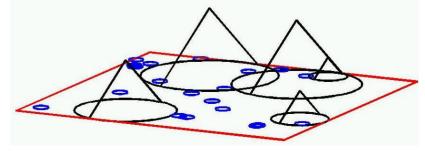
We maintain a factored belief over elements/locations

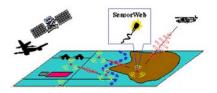
$$P(r|\theta) = \prod_{x \in \mathcal{X}} \theta_x^{r_x} (1 - \theta_x)^{1 - r_x}$$

The expected response from a sensor is given by

$$P(y_c = 1|\theta) = \sum_r P(y_c = 1|r)P(r|\theta)$$

where $y_c = 1$ signifies "detection"



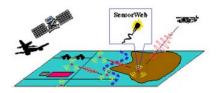


Maintaining beliefs

 We have to revise our beliefs (e.g., about asset locations) after each sensor response

We project the posterior back into the factored beliefs

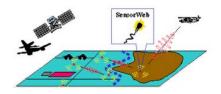
$$P(r; \theta') = \arg\min_{Q \in \mathcal{P}} D(P(r|\hat{y}_c, \theta) ||Q(r))$$



Query optimization

- The expected information rate from a sensor often cannot be evaluated efficiently.
- We instead optimize a lower bound

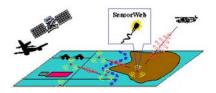
$$I(y_c; r | \theta) \ge E_{y_c} \left\{ \sum_{x \in c} D\left(\theta_{x; y_c} \| \theta_x\right) \right\} \stackrel{def}{=} I_p(y_c; r | \theta)$$



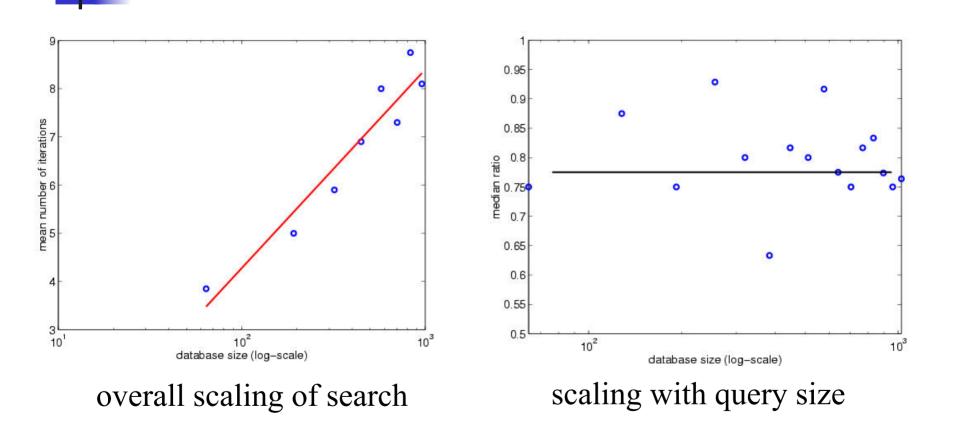
Query optimization cont'd

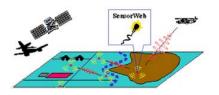
 To select k sensors for a query, we combine the lower bound with a series of conditional projections

 $\Rightarrow k$ selections in time $\mathcal{O}(kn)$ (with cached reconstruction of non-additive components)



Example results





Summary

- Information queries from a collection of sensors can be performed in a scalable manner
 - The algorithms scale linearly with domain/channel size
 - The sensors/detectors limited by "cumulative" detection
- Extensions:
 - Incorporation of specific sensors characteristics
 - Analysis and coordination of heterogeneous sensors