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Research topics

! Consistency of information in large sensor 
networks (with M. Wainwright and A. 
Willsky); IT 1, RCA 5

! Robust fusion of partial information 
sources (with A. Corduneanu); IT 1&2, 
RCA 5 (& 6)

! Optimal acquisition of information through 
multi-resolution sensors (with H. 
Siegelman); IT 2, RCA 4&5



Talk plan

! PART I: Robust fusion of partial 
information sources

! PART II: acquisition of information from 
multi-resolution sensors with resource 
constraints 

! Discussion



! Multiple partial sources of 
information  (e.g., 
heterogeneous sensors, 
fragmented databases)

! Sources provide different 
quality and quantity of 
useful information

! The problem is to find a 
robust estimate of the 
model

PART I: Robust fusion of partial 
information sources

Source 1  Source 2  Source 3 …

Model estimation

Source 1 Source 2



Robust estimation
! The problem features: 

! A structured graph model over the 
domain

! A likelihood based estimation 
criterion

! Incomplete data sources (e.g., 
missing variables) 

! Relevant questions:
! How should we balance the sources?
! Are the standard algorithms stable?
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Example setting, the EM algorithm



The EM algorithm: why not?



The EM algorithm: why not?



Controlled evolution of fixed points



Evolution of fixed points cont’d



Critical points

Current solution EM operator Initial solution



Preliminary fusion results:

! By identifying “critical points” in estimation, we can 
prevent dramatic loss of accuracy 



Fusion of partial information sources

! The standard algorithms can lead to dramatically 
worse results as we include more incomplete 
information

! Our alternative approach concerns with a 
controlled evolution of differential equations 
governing locally optimal solutions

! By explicitly identifying critical points we can 
avoid unstable and unpredictable solutions

! Remaining questions:
! Optimal allocation of sources based on additional 

information (e.g., uncertainty)
! Computationally efficient algorithms 



PART II: optimal acquisition of 
information

! The setting:
! Multi-resolution (dynamically defined) sensors 
! Sensor queries governed by resource constraints 

(bandwidth, cost of deployment, etc.) 
! Problems to address: 

! Find (near) optimal strategies for querying the sensors 
under such resource constraints to

! quickly locate features or
! maintain an accurate model of the domain

! Characterize the inherent trade-offs between cost, 
expected completion time, sensor types, etc. 



Problem simplification
! We start with a simpler problem

! E.g., battlefield scenario "# database
! Multi-resolution sensors "# cluster hierarchy
! Sensor measurements "# selection/annotation of cluster 
! Resource constraints "# clusters/query

! The goal is to locate features in the database with 
minimum number of queries

! We still have
! Multiple levels of abstraction
! Resource constraints
! The same theoretical questions



Information, queries, responses

! Information we are after
! Unknown “weights” associated with 

the elements in the database 
(relevance; feature distribution) 

! Permitted queries:
1. Annotation of a subset of clusters
2. Cluster choice

! Interpretation of the responses:
1. Annotations based on thresholded

cluster weights
2. Stochastic weight based selection of 

clusters
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The problem

! Components
! Available clusters
! Response model
! Query limitations (k clusters)
! Initial model         (Dirichlet)

! We wish to recover the underlying weight 
distribution with the minimum number of 
iterations 
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Computational problems

! Algorithmic issues:
! How to find the optimal query set
! How to maintain an accurate 

estimate 

! Theoretical questions:
! Bounds on the expected 

interaction length
! Trade-offs between the query set 

size, response model, and the 
expected interaction time

! Robustness against structural 
errors
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Query set optimization

! Criterion: maximize the information we stand 
to gain from the response, i.e., ( ; | )I y Sθ



Query set optimization

! Criterion: maximize the information we stand 
to gain from the response, i.e., 
! To facilitate the optimization, we transform the current Dirichlet

estimate        into a hierarchical form
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Query set optimization cont’d

! The hierarchical representation leads to an 
efficient O(mk) approximate search algorithm 
for the query set based on dual “cluster 
weights”

(for stochastic responses)
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Maintaining the estimate

! The posterior          no longer remains in the family 
of interest (e.g., Dirichlet)

! To ensure feasible iterative optimization, we project 
the posterior back into the family of interest

(operation linear in the database size)

! The problem here is closely related to consistent 
propagation algorithms
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Some preliminary results:

! The expected entropy of the projected 
posterior is still guaranteed to decrease 
monotonically

! Bounds on the slope of the expected 
reduction



On-going and future work

! More realistic sensor and sensor response 
models

! Characterization of the approximation 
error in the query set optimization

! Theoretical analysis:
! Bounds on the expected interaction length and 

the associated trade-offs
! Robustness against model assumptions


