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i Research topics

= Consistency of information In large sensor
networks (with M. Wainwright and A.
Willsky); IT 1, RCA 5

= Robust fusion of partial information
sources (with A. Corduneanu); IT 1&2,
RCA 5 (& 6)

= Optimal acquisition of information through
multi-resolution sensors (with H.
Siegelman); IT 2, RCA 4&5




i Talk plan

= PART I: Robust fusion of partial
Information sources

= PART II: acquisition of information from
multi-resolution sensors with resource
constraints

= Discussion
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PART I: Robust fusion of partiff e
i Information sources

Uy et
= Multiple partial sources of  ¢—®—0—C (—e—e—8
information (e.g., P800  (—e—e—e
heterogeneous sensors, O—0—0—0 0—0—0—@
fragmented databases) Source 1 Source 2
= Sources provide different
guality and quantity of Source 1 Source 2 Source 3 ...
useful information
= The problem is to find a \
robust estimate of the v

model Model estimation



Robust estimation

= The problem features:

= A structured graph model over the
domain

= A likelihood based estimation
criterion

= Incomplete data sources (e.g.,
missing variables)

= Relevant questions:

= How should we balance the sources?
= Are the standard algorithms stable?
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T e x, M e X,
X X
2 2
Source 1 (few) Source 2 (many)

E-step: P(z,y) «+ (1 = A\)P1(z,y) + AQ(y|z) Po(x)
M_SteD: Q?(‘T??y) — E:]:\mt— P(‘Tﬁy)
where A\ balances the information sources

e \We can collapse these updates into a single operator

Q — EM)(Q)



* The EM algorithm: why not?

e [ he problem with the EM-algorithm is the existence of multiple
fixed points

Q\ = EMy(QY), i=1,...,L



The EM algorithm: why not?

e [ he problem with the EM-algorithm is the existence of multiple

fixed points

Q\ = EM\(QY), i=1,...,L

e Some of the fixed points are good, others may be terrible
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Controlled evolution of fixed points

e Instead of finding a single fixed point, we can trace a continuous
path of fixed points starting from a single source (complete)

Q\= EM\(Q)), A€ [0,1)

e Each fixed point in this curve is firmly rooted in the maximum
likelihood solution based on the initial source or Qg

=0 £Q 0(1{,,}!) = solution based on a single source



Evolution of fixed points cont’d

e \We can explicitly identify any critical points, i.e., points where
multiple fixed points begin to emerge

=0 £Q O(X,y) = solution based on a single source

e Although we are typically only interested in solutions before the
critical points (predictability), such bifurcation events can be
traced further



Critical points

e [ he differential equation governing the fixed points is

Current solution EM operator Initial solution

5t SN l

B_AQ}‘ — (I— AVQEMl(QA)) X (EM1(Q)) — Qo)

0.4

e [ he critical points are real-

ized as zero eigenvalues of 5 0.2
the (transformed) Jacobian ¢




Preliminary fusion results:

Smalles! eigenvalua

= By identifying “critical points” in estimation, we can
prevent dramatic loss of accuracy
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i Fusion of partial information sources

= The standard algorithms can lead to dramatically
worse results as we include more incomplete
Information

= Our alternative approach concerns with a
controlled evolution of differential equations
governing locally optimal solutions

= By explicitly identifying critical points we can
avoid unstable and unpredictable solutions

= Remaining questions:

= Optimal allocation of sources based on additional
iInformation (e.g., uncertainty)

=« Computationally efficient algorithms
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PART I1: optimal acquisition of=—aa®
iInformation

/N
= The setting: / %7

= Multi-resolution (dynamically defined) sensors
= Sensor gueries governed by resource constraints
(bandwidth, cost of deployment, etc.)

= Problems to address:
= Find (near) optimal strategies for querying the sensors
under such resource constraints to
= quickly locate features or
= Maintain an accurate model of the domain

= Characterize the inherent trade-offs between cost,
expected completion time, sensor types, etc.




Problem simplification

= We start with a simpler problem
= E.g., battlefield scenario <-> database
= Multi-resolution sensors €<-> cluster hierarchy
= Sensor measurements <-> selection/annotation of cluster
= Resource constraints €< -> clusters/query

= The goal is to locate features in the database with
minimum number of queries

= We still have
= Multiple levels of abstraction

= Resource constraints
= The same theoretical questions
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Information, queries, responses

Information we are after

= Unknown “weights” associated with A -
the elements in the database /%/
(relevance; feature distribution)

Permitted queries: 0.4, > 6,=1

1. Annotation of a subset of clusters xeX

2. Cluster choice

Interpretation of the responses:

1. Annotations based on thresholded
cluster weights

2. Stochastic weight based selection of
clusters




i The problem

= Components A
= Available clusters {C.C,,..., / é/

= Response model )(Z}:(H =1
= Query limitations (k clusters)
= Initial model P(@) (Dirichlet)

= We wish to recover the underlying weight
distribution with the minimum number of
Iiterations




Computational problems

= Algorithmic issues:
= How to find the optimal query set
= How to maintain an accurate
estimate P(6)
= Theoretical questions:

= Bounds on the expected
Interaction length

= Trade-offs between the query set
size, response model, and the
expected interaction time

= Robustness against structural
errors

/N
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Of: D, 0x=1

xeX




i Query set optimization

s Criterion: maximize the information we stand
to gain from the response, i.e., 1(6;y|S)
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i Query set optimization

=z Criterion: maximize the information we stand

to gain from the response, i.e., 1(8"y|S)

= To facilitate the optimization, we transform the current Dirichlet
estimateP () into a hierarchical form

flat query specific hierarchy



i Query set optimization cont'd

= The hierarchical representation leads to an
efficient O(mk) approximate search algorithm
for the query set based on dual “cluster
weights”

) _ weight'of S

HO5Y1S) =T Ggntof 5

+ F(weight of S)

(for stochastic responses)
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i Maintaining the estimate

= The posterior P(@1Y) no longer remains in the family
of interest (e.qg., Dirichlet)

= T0 ensure feasible iterative optimization, we project
the posterior back into the family of interest

P*(0) = arngi nD(Fyy [Qp)

(operation linear in the database size)

= The problem here is closely related to consistent
propagation algorithms
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i Some preliminary results:

= The expected entropy of the projected

posterior Is still guaranteed to decrease
monotonically

= Bounds on the slope of the expected
reduction



i On-going and future work

= More realistic sensor and sensor response
models

= Characterization of the approximation
error In the query set optimization

= Theoretical analysis:

= Bounds on the expected interaction length and
the associated trade-offs

= Robustness against model assumptions



