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Goals

Data association across nonlinear and/or
dispersive channels
Statistical models of heterogeneous 
sensors 



Data Association and Fusion
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Issues and Challenges

In the absence of a prior statistical model and 
given nonlinear and/or dispersive media
How do we

solve data association problem in a principled 
manner?
fuse/utilize multi-modal data?

Can we
propagate the results to higher level algorithms in 
the form of likelihoods or scores?



Vital Statistics

IT-2  (fusion of heterogeneous sensors in unstructured 
and uncertain environments)

RCA-1 (self-calibration)

RCA-5 (fusion algorithms)

RCA-7 (data for experiments and demos)

Ties to RCA-2&3 (Tradeoffs in local vs. global processing)

Contributors
Fisher, Ihler, Çetin, Willsky

Preliminary outputs
Several publications and talks
A number of academic, industrial, and DoD interactions



Data Association
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Data Association Problem

Sensors receive data 
and associated 
bearing estimates
Bearing alone results 
in an inherent 
ambiguity
Correspondence 
problem between 
A1,2 and B1,2



Data Association as a 
Hypothesis Testing Problem

Typically, one incorporates factorization and and an assumed 
parameterized density under either hypothesis 

resulting in a log-likelihood of
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Data Association as a 
Hypothesis Testing Problem

Expectation (or limit) under H1 yields

under H2 yields
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Terms related to association 
(i.e. statistical dependency)

Terms related to density 
modeling assumptions



What if prior models are not available?

Suppose we have “perfect” density estimates from the 
measurements.
We can estimate the factorization under H1 and H2 from data, 
but the terms due to the assumed density go away.
Data association becomes a hypothesis test over factorizations

So we lose the benefit of parametric density terms, but …
We also don’t suffer when the density model terms are wrong.
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Density Estimation Effects

Of course, we have imperfect density estimates 
introducing additional biases in our log-likelihood 
computation.
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Distribution over log-likelihoods

log L
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Dimensionality – Feature Extraction

High dimensionality precludes direct density estimation.
Dependence may be captured in a low-dimensional 
subspace (or manifold).
Compromise by projecting to a lower dimensional space.

Use kernel density estimator to compensate for 
complexity in the feature space.
Objective is to do this without training.
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Dimensionality – Feature Extraction

By choosing the projection coefficients to maximize MI 
under the hypothesis we minimize the deviation of the 
LRT in the feature space from the LRT in the 
measurement space
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Nonlinear Channel

F1

F2

unknown

HPF

LPF

S1 A

S2 B

Received signals are uncorrelated but not independent



Narrowband, Uncorrelated Signals

Signal 1 Signal 2

Sensor A

Sensor B



Feature Space

A1 Spectra projected down to 
single scalar value.
Density estimated in MI 
optimized feature space.
MI (data association log-
likelihood) computed over 
feature space.
Dependence is clear.

A2

B1

B2



Wideband, Uncorrelated Signals

Signal 1 Signal 2

Sensor A

Sensor B



Feature Space

Association is less 
obvious for wideband 
case.
This is also reflected 
in MI values.
Combined score still 
chooses correct 
association

MI = 0.66MI = 0.65

MI = 0.37MI = 0.76

A2A1

B2

B1

0.143 (1-1,2-2) > 0.102 (1-2,2-1)



Dispersive Medium

F1

F2

unknown

all-pass
linear phase

all-pass
dispersive

S1 A

S2 B

Both correlation and dependence degrade, but not at 
the same rate



Dispersive Medium
P{correct association}
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Information Theoretic Sensor Fusion
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Last Year

Lower

g1

g2

f1

f2

Dimensional
RepresentationSensors

V

U

Multi-modalSources +
Interference

I1

S2

I2

S1

Maximizing 
I(g1;f1), I(g2;f2) and 
H([g1,f1],[g2,f2]) 
recovers a 
representation of 
the sources up to a 
permutation (re: 
data association)



Acoustically Steered Imaging Sensor

Last time we presented our local fusion 
approach and justified it statistically.
Here we focus on an application in the 
sensor domain considering a single narrow 
field of view imaging sensor (e.g. IR or 
video) guided by broad field of view 
acoustic sensors.



acoustically steered imaging sensor

img aud

Imaging sensor has a 
narrow field of view, 
but can be steered.
Acoustic sensor has 
little directivity (broad 
field of view)



acoustically steered imaging sensor

img aud

Use local fusion to 
derive bearing to 
source when

One source is emitting 
an acoustic signal -
opportunistic
Both sources emit 
acoustic signals 
simultaneously – local 
ambiguity



Single source detection



Multi Source Separation
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