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• Recursive propagation and fusing dynamic streams

• Future directions



Problem and Motivation

• Would like to fuse myopic information to attain 
more global view of battlefield scenario

• Dynamic scene/sensing: need fast algorithms but 
can exploit temporal regularities.

• Unknown scene and sensor geometry



Problem and Motivation cont.

• Complex, dynamic environment

• Multiple, widely separated sensing

• Uncalibrated, possibly dynamic, sensors 
(unknown parameters, geometry)

• Noise



Approach

• In-depth analysis with two sensor streams

• Use video as the sensing mode surrogate

• For a fixed snapshot, develop methods to 
estimate relative geometry.

• Exploit temporal regularities to develop fast 
recursive method to deal with dynamics



Cameras and Images
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Estimating Relative Sensor 
Geometry

• For camera rotation or planar scene, image points
are related by a projective transformation:

• Given two views of overlapping scene, would like to
estimate the projective transformation.

• Typically an 8-dimensional non-quadratic minimization.
We develop a 2-dimensional reduction that can be
solved efficiently.
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Noisy Samples
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These are noisy samples of a fixed but unknown PT:
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The Least-Squares Estimate
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Generally solved using a numerical minimization
algorithm, e.g. Levenberg-Marquardt.

Issues:  dimensionality, initialization, complexity



Reduction to a 2D Problem
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• Can re-write normal equations 
so that optimal A, b are functions 
of optimal c.

• The least-squares solution lies 
on a 2-dimensional manifold: 
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Proposed Algorithm for Minimizing J



Image Mosaicking (rotating camera)



Image Mosaicking (planar scene)



Obtaining Detailed Signal 
Correspondence
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• Detailed signal correspondence depends on both relative
sensor geometry and environment (signal sources)

• Classic problem, but more difficult than stereo due to
large sensor separation



Estimating Image 
Correspondence

• Estimate epipolar geometry

• Formulate as finding an optimal path 

• Choose interval matching cost function

• Correctly deal with non-monotonicity



Epipolar Geometry
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Matching Graph

Monotonicity allows the use of dynamic programming.

Epipolar line, left image
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Interval Matching Cost Function
Interval from epipolar line 1 Interval from epipolar line 2
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Cost is proportional to variance of 
intensities from the mean, and 
lengths of the intervals.



Violations of Monotonicity

Camera 1 Camera 2

Object arrangement can vary widely between views!
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Occlusions and Monotonicity
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Graph of visible correspondences is:  1) Not monotonic
2) Not continuous

But: is a set of monotonic pieces.

Epipolar line, left image

Ep
ip

ol
ar

lin
e,

 ri
gh

t i
m

ag
e



The Correspondence Graph

Foreground object +
Background model

Visible correspondences
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The set of all points that are visible in both epipolar lines.



Tells: which regions are visible in both images
which regions are visible in just one image
how to fill in “holes” in correspondence

A Real Correspondence Graph



View Morphing

• Seitz and Dyer,  SIGGRAPH `96

• Rectify image planes
• Virtual camera lies

on baseline
• Algorithm depends

on pixel-dense
correspondence



A Virtual Image



Virtual Video from Wide-
Baseline Stills



Recursive Propagation and 
Fusing Dynamic Streams

Fusion requires relative geometry and detailed
correspondence information.

These are hard, time-consuming problems.

Estimating this information anew at each step is
prohibitively expensive.

Approach: A recursive algorithm for the propagation of
geometry and correspondence information.



Relationships Between Images



)(ˆ iχ : an estimate of correspondence 
between a pair of image planes at time i.

Recursive Propagation Equations
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Time Update

Let (p0 ,p1) be a correspondence in P0(i) x P1(i).          

The time update is:

In practice, we use an approximation       .

Using appropriate rectifying projective 
transformations, the time update 
becomes the identity.
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Measurement Update

Dynamic programming confined to a
neighborhood of the time-updated estimate.



Virtual Video



Virtual Video of Dynamic Scene 
from Two Video Streams



Summary and Future Work

• Methodology for fusing uncalibrated myopic
sensors to obtain global/joint information

• Estimating relative sensor geometry
• Detailed sensor correspondence
• Recursive propagation and fusing dynamic

sensor streams

• Limitations with less resolution, etc.
• Deal with other sensor types
• Joint consideration of many sensors
• Effects of limited computation, communication




