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Outline

e Problem and motivation

« Estimating relative sensor geometry

» Obtaining detailed signal correspondences

e Recursive propagation and fusing dynamic streams

e Future directions



Problem and Motivation

* Would like to fuse myopic information to attain
more global view of battlefield scenario

 Dynamic scene/sensing. need fast algorithms but
can exploit temporal regularities.

« Unknown scene and sensor geometry



Problem and Motivation cont.

Semsoreh

« Complex, dynamic environment
* Multiple, widely separated sensing

e Uncalibrated, possibly dynamic, sensors
(unknown parameters, geometry)

e Noise



Approach

e In-depth analysis with two sensor streams
» Use video as the sensing mode surrogate

 For a fixed snapshot, develop methods to
estimate relative geometry.

« Exploit temporal regularities to develop fast
recursive method to deal with dynamics
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Cameras and Images

P=(XY,2)=(X',Y',Z)

G

X

a



Estimating Relative Sensor
Geometry

* For camera rotation or planar scene, image points
are related by a projective transformation:

Aw+Db
c'w+1

Oy (W) = Ac R™: b,ce R’

e Given two views of overlapping scene, would like to
estimate the projective transformation.

e Typically an 8-dimensional non-quadratic minimization.
We develop a 2-dimensional reduction that can be
solved efficiently.



Noisy Samples

e

Given a set of point mappings: | w aw eR?, j=1K,N }

These are noisy samples of a fixed but unknown PT:

g;/l: WJ :g;/l (Wj)+ej1 J=1LK,N



The Least-Squares Estimate
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Generally solved using a numerical minimization
algorithm, e.g. Levenberg-Marquardt.

Issues: dimensionality, initialization, complexity



Reduction to a 2D Problem

Projective transformation estimation cost function

* Can re-write normal equations
so that optimal A, b are functions
of optimal c.

 The least-squares solution lies
on a 2-dimensional manifold:

M ={ (Ab,c): A=A(c), b=b(c), ce R? |

min 3(0)- i {W.j CAQ) w, + b(c)j (W.j A W, + b(c)j
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Proposed Algorithm for Minimizing J
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Image Mosaicking (rotating camera)




Image Mosaicking (planar scene)




Obtaining Detaliled Signal
Correspondence
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 Detailed signal correspondence depends on both relative
sensor geometry and environment (signal sources)

e Classic problem, but more difficult than stereo due to
large sensor separation



Estimating Image
Correspondence

Estimate epipolar geometry
Formulate as finding an optimal path
Choose interval matching cost function

Correctly deal with non-monotonicity



Epipolar Geometry

(R.0)




Matching Graph

Epipolar ling, right image
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Epipolar line, left image

Monotonicity allows the use of dynamic programming.



Interval Matching Cost Function

Interval from epipolar line 1 Interval from epipolar line 2
lMean Meanl
Mean
[] a4 B []
2 2 2
O-l > O' < 0-2

5 > > Cost Is proportional to variance of
C =0 \/k -+ | Intensities from the mean, and
lengths of the intervals.




Violations of Monotonicity

Camera l Camera 2

Object arrangement can vary widely between views!



Occlusions and Monotonicity
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Graph of visible correspondences is:

But: Is a set of monotonic pieces.

Epipolar line, left image

1) Not monotonic
2) Not continuous



The Correspondence Graph

The set of all points that are visible in both epipolar lines.

Epipolar line, right image

Epipolar line, right image

- -

Epipolar line, left image Epipolar line, left image

Foreground object + Visible correspondences
Background model



A Real Correspondence Graph
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Tells: which regions are visible in both images
which regions are visible in just one image
how to fill in “holes” in correspondence



View Morphing
o Seitz and Dyer, SIGGRAPH 96

e Rectify image planes

* Virtual camera lies
on baseline

« Algorithm depends
on pixel-dense
correspondence




A Virtual Image




Virtual Video from Wide-
Baseline Stills




Recursive Propagation and
Fusing Dynamic Streams

Fusion requires relative geometry and detailed
correspondence information.

These are hard, time-consuming problems.

Estimating this information anew at each step Is
prohibitively expensive.

Approach: A recursive algorithm for the propagation of
geometry and correspondence information.



Relationships Between Images

Video Video
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Recursive Propagation Equations

¥ (1) : an estimate of correspondence
between a pair of image planes at time 1.

1(010) = x(0)
(i +11i) = T@a10)
R +1]i+D) = MG +1]i))



Time Update

Let (p,,p,) be a correspondence in Py(i) x Py(i).

The time update Is:

T (P p) = (P +D Py . Qi +Dp)

In practice, we use an approximation T.™

Using appropriate rectifying projective
transformations, the time update
becomes the identity.



Measurement Update

epipolar line in &
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Dynamic programming confined to a
neighborhood of the time-updated estimate.



Virtual Video




Virtual Video of Dynamic Scene
from Two Video Streams




Summary and Future Work

Methodology for fusing uncalibrated myopic
sensors to obtain global/joint information
Estimating relative sensor geometry
Detailed sensor correspondence

Recursive propagation and fusing dynamic
Sensor streams

Limitations with less resolution, etc.

Deal with other sensor types

Joint consideration of many sensors

Effects of limited computation, communication






