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Source Localization Goals

uy(t)
oy e e Context:
=Acoustic sensors
- fin 9 =Narrowband/broadband signals
Eis K =Far-field/near-field sources

RY? G T =Any array configuration
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Obijectives for the new approach:

Superior source localization performance (e.g. resolution)
Robustness to limitations in data quality or quantity
Self-calibration capability to handle uncertainties

in sensor locations




Why is this interesting?
i How do we solve it?

Relevance for the SensorWeb context:
= Limited aperture - limited Rayleigh resolution
= Limited observation time, low SNR
= Sensor locations known only approximately
Proposed approach:
= View the problem as one of /imaging a

“source density” over the field of regard

= Ill-posed inverse problem

= Cast as an optimization problem and regul/arize by
favoring fields with concentrated densities

= Include optimization over sensor locations




Vital Statistics

m IT-2 (Fusion of heterogeneous sensors in unstructured
and uncertain environments)

s RCA-1 (Self-calibration)
s Ties to RCA-2&3 (Tradeoffs in local vs. global processing)
and RCA-4 (Minimum resource requirements)
= Contributors
= Malioutov, Cetin, Fisher, Willsky
= Preliminary outputs
= Several publications and talks

= A number of academic, industrial, and DoD
interactions




= Consider M sensors, K source signals w(¢)

Source location parameters

Preliminaries
K

gm(t) = Z

/’ k=1
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Uk(t — TT(Hk)) + nm
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Observations at the m-th sensor

Time delay to the m-th sensor

Noise at the m-th sensor

= Time delay structure depends on far vs. near-field
= In frequency domain (combining all sensors):

g(w) = A(w, ©)u(w) + n(w)

where A, (v, ©) = exp(—jwrm(6L))

= Note A(w,©) depends on actual source locations



i Observation Model

= Let {f1..-, 6,1 be a sampling grid of all source locations
= Define a Ng X lvector s(w)
s (w) = { up(w), if B; =0

0, otherwise

= Define the M x Nj steering matrix A(w)
(linking all potential source locations to all sensors)
= Resulting “overcomplete” observation model:

g(w) = A(w)s(w) + n(w)

= Formulate as a sparse signal reconstruction problem

= Determine source locations from peaks in reconstructed
signal energy




A Variational Framework
for Source Localization

= Minimize the cost function:

J(s) = llg — As|3 + alls|i;
— AN

Data fidelity Regularizing sparsity constraint

= Role of the regularizing constraint (p < 1):
= Preservation of strong features (source densities)
= Preference of sparse source density field
= Can resolve closely spaced radiating sources
= Other non-quadratic functions can be used
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Using a relatively small p in the minimization of the £,-norm of a
vector results in the preference of a sparser vector structure
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i Solution of the Optimization Prdbiém

= Cost function (differentiable approximation):

Ng

J(s) = |lg — As|3 + a 3 (Isi]? + €)P/?
=1

= Gradient of the cost function:

VJ(s) =2 (H (s) S—AHg)



i Solution of the Optimization PrchFem

= [terative Scheme:
H (g(n)) s(ntl) — AHg

where n denotes the iteration number, and

H(s) £ AYA 4 aA(s)

A p/?2
Als) = diag {(ls@-P + e)l—p/Q}

= Can be interpreted as a Quasi-Newton method with
Hessian approximation 2 - H(-) and unit step size

= Each step solves a quadratic optimization problem
with intuitive, spatially adaptive weights




Overview of Experiments

= Narrowband, far-field

= Performance analysis based on multiple trials as a function
of SNR and number of snapshots

= Narrowband, near-field

= Broadband, far-field

= Linear, circular, cross, rectangular arrays
= 200 time samples

= Use p = 0.1 in our objective function

= Choose & by subjective assessment
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Narrowband, far-field
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i [terative behavior




Prob. Correct Localization vs.NR

Prob. of localization with 1° accuracy
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= DOAs: 50°, 65°
= Number of independent trials = 200
= Have similar results based on RMSE



Prob. Correct Localization
vs. # snapshots

Prob. of localization with 1° accuracy
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Near-field

Conventional beamforming

= Uniform linear array with 8 sensors

= WO uncorrelated sources
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Multiple harmonics

Conventional beamforming Proposed
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= Harmonics at 150 & 350 Hz, with DOAs: 50°, 65°
= SNR = 30 dB, uniform linear array with 8 sensors
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Broadband

Conventional beamforming | Proposed
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= Three chirp signals



i Extension to self-calibration

= Preliminary approach

T(s,0) = llg = A()s| + ofls|l?
/

Sensor locations

= Use block coordinate descent for optimization
st — arg min J (s, ’r‘(”))
p(ntl) — arg mrin J(é‘(”'l'l), r)



Self-calibration experiments

= Setup:
=« Far-field case
= Narrowband signals
= Linear array with 15 sensors
= Two uncorrelated sources
= DOAs: 45°, 75°
= SNR =30dB
= Sensor locations perturbed with a standard deviation of
1/3 of the nominal sensor spacing
= 2-D array experiments underway
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Fower [dB)

location error (m)

Some sensor locations known
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Summary

= Regularization-based framework for source
localization with passive sensor arrays

= Superior source localization performance
= Superresolution
= Reduced artifacts
= Robustness to resource limitations
= SNR
= Observation time
= Available aperture

= Self-calibration capability
= Can handle moderate uncertainties in sensor locations



Current and Future Work

= More on self-calibration
= Gain/phase uncertainties in sensors
= Ties to “autofocusing” methods in other domains
= Identify limits on how much calibration error can be tolerated
= Multiple arrays, complementary ties to Moses/Srour
= Apply to the spatial coherence loss problem
= Experiments with measured data
Issues to investigate
= Choice of regularizing functionals and hyperparameters
= Analysis of statistical performance, bounds
= Tradeoffs between relatively local vs. global processing
Extensions
= Mobile/non-stationary environments
= Heterogeneous sensors
= Complex media = Directional sensors
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