Embedded Systems

Ch 14B
Linux Kernel

Byung Kook Kim
Dept of EECS
Korea Advanced Institute of Science and Technology

Overview

m 1. Bootloader

m 2. EzBoot

m 3. Boot Sequence

m 4. Linux Boot Process

m 5. Linux Kernel

Embedded Systems, KAIST

4. Linux Boot Process

= The chain of events at boot in PC
= CPU -> VGA -> Power-On-Self-Test ->
= SCSI -> Boot Manager -> Lilo boot loader ->

= kernel-> init-> bash.

= The firmware and software programs output various
messages as the computer and Linux come to life.

Embedded Systems, KAIST

Linux Boot Process (I1)

= Linux boot procedure (PC with Disk)

= 1. The Motherboard BIOS Triggers the Video Display Card BIOS
Initialization

2. Motherboard BIOS Initializes Itself
3. SCSI Controller BIOS Initializes

4. Hardware Summary:

« The motherboard BIOS then displays the summary of its hardware
iInventory. And runs its Virus checking code that looks for changed

boot sectors.

5. BootManager Menu:

= The Master Boot Record (MBR) on the first hard disk is read, by DOS
tradition, into address 0x00007c00, and the processor starts
executing instructions there.

= This MBR boot code loads the first sector of code on the active DOS
partition.

Embedded Systems, KAIST 4

Linux Boot Process (I11)

= Linux boot procedure (11)

= 0. Lilo is started:

= If the Linux selection is chosen and if Linux has been installed with
Lilo, Lilo is loaded into address 0x00007c00.

Lilo prints LILO with its progress revealed by individually printing the
letters.

The first "L" is printed after Lilo moves itself to a better location at
O0x0009A000.

The "I" is printed just before it starts its secondary boot loader code.
Lilo's secondary boot loader prints the next "L", loads descriptors
pointing to parts of the kernel, and then prints the final "O".

The descriptors are placed at 0x0009d200.

The boot message and a prompt line, if specified, are printed.

The pressing "Tab" at the prompt, allows the user to specify a
system and to provide command-line specifications to the Linux
Kernel, its drivers, and the "init" program. Also, environment
variables may be defined at this point.

Embedded Systems, KAIST 5

Linux Boot Process (1V)

= Linux boot procedure (111)

= 7. The kernel code in /linux/arch/i386/boot/setup.S arranges the
transition from the processor running in real mode (DOS mode)
to protected mode (full 32-bit mode).

Embedded Systems, KAIST

Blocks of code named Trampoline.S and Trampoline32.S help with
the transition.

Small kernel images (zlmage) are decompressed and loaded at
0x00010000.
Large kernel images (bzlmage) are loaded instead at 0x00100000.

This code sets up the registers, decompresses the compressed kernel
(which has linux/arch/i386/head.S at its start), printing the following
2 lines from linux/arch/i386/boot/compressed/misc.c

Uncompressing Linux... OKk.
Booting the kernel.

The 1386-specific setup.S code has now completed its job and it
jumps to 0x00010000 (or 0x00100000) to start the generic Linux
kernel code.

Linux Boot Process (V)

= Linux boot procedure (1V)

= 8. Generic Linux kernel code

= Processor, Console, and Memory Initialization:

This runs linux/arch/i386/head.S which in turn jumps to
start_kernel(void) in linux/init/main.c where the interrupts are redefined.

Linux/kernel/module.c then loads the drivers for the console and pci bus.

From this point on the kernel messages are also saved in memory and
available using /bin/dmesg.

They are then usually transferred to /var/log/message for a permanent
record.

= PCI Bus Initialization:

mpci_init() in linux/init/main.c causes lines from
linux/arch/i386/kernel/bios32.c to be printed.

= Network Initialization:
socket_init() in linux/init/main.c causes network initializations.
Embedded Systems, KAIST 7

Linux Boot Process (VI)

= Linux boot procedure (V)

= 8B. Generic kernel code (cont’d)

= The Kernel Idle Thread (Process 0) is Started : At this point a kernel
thread is started running init() which is one of the routines defined in
linux/init/main.c.

This init() must not be confused with the program /sbin/init that will be
run after the Linux kernel is up and running.

mkswapd_setup() in linux/init/main.c causes the following line from
linux/mm/vmscan.c to be printed:

Starting kswapd v 1.5

Embedded Systems, KAIST 8

Linux Boot Process (VII)

= Linux boot procedure (V1)

= 8C. Generic kernel code (Cont'd)

= Device Driver Initialization : The kernel routine
linux/arch/i386/kernel/setup.c then initializes devices and file
systems. It produces the following lines and then forks to run
/sbin/init:
Generic Parallel Port Initialization: The parallel port initialization routine
linux/drivers/misc/parport_pc.c prints.
Character Device Initializations: from linux/drivers/char/serial.c:
Block Device Initializations : linux/drivers/block/rd.c prints:
RAM disk driver initialized: 16 RAM disks of 8192K size
linux/drivers/block/loop.c prints:
loop: registered device at major 7
linux/drivers/block/floppy.c prints:

Floppy drive(s): fdO is 1.44M, fdl is 1.44M FDC O is a post-1991
82077

SCSI Bus Initialization: aic7xxx.c, scsi.c, sg.c, sd.c or sr.c in the
subdirectory linux/drivers/scsi.

Embedded Systems, KAIST 9

Linux Boot Process (VIII)

= Linux boot procedure (VII)

= 8D. Generic kernel code (Cont'd)

= Initialization of Kernel Support for Point-to-Point Protocol : The
initialization is done by linux/drivers/net/ppp.c.

« Examination of Fixed Disk Arrangement : from
linux/drivers/block/genhd.c:

= 9. Init Program (Process 1) Startup:

= The program /sbin/init is started by the "idle" process (Process 0)
code in linux/init/main.c and becomes process 1.

= /sbin/init then completes the initialization by running scripts and
forking additional processes as specified in /etc/inittab.

= It starts by printing: INIT: version 2.76 booting and reads
/etc/inittab.

= 10. The Bash Shell is Started:

= The bash shell, /bin/bash is then started up. Bash initialization begins
by executing script in /etc/profile which set the system-wide
environment variables. Login:

Embedded Systems, KAIST 10

5. Linux Kernel

IR EI|

Multi- tasklng (O=2He)
= Preemptive, mutually independent

Multi-user access ((}= Al2XI M2

Multi-tasking (L+S X cl)
= Multi-task time sharing
» Distribution to multiple processors possible
Architecture independence (f1X SEA)
= Pc, Amiga, DEC Alpha, Sparc, Power PC, ARM, ...
Demand load executables (27 I Al JIsSA)
» Loaded into memory only when required. Copy-on-write.
Paging (IHI O] &)
= Memory full: disk swap in 4K bytes unit (not a whole process).

Dynamic cache for hard disk
« SMOZ AIZ9I disk cache memory 0] AJ|IE X3 JIs.

Embedded Systems, KAIST 11

Linux Kernel (11)

» 8 E3 (cont’'d)
Shared Libraries (8 library)
« 0 Z=2MAMAM Q+0t= Library code & SHH O HIHOIK 3
= POSIX 1003.1 standard, System V, BSD support
= POSIX 1003.1: Unix HEHC| 2B MMl %l 29| interface
= System V, BSD € ot £IIA 9l system interface
- AUWIESTH LSOl NS OIS HAIS
= MS-DOS, Windows emulator
= Memory protection mode
= Access protection to other processes and system kernel
= Internationalization
= Character sets and keyboard drivers for various countries
= 0 file system X|¥
= Ext2, VFAT, ISO, NFS
« AFF for Amiga, UPS, SysV, HPFS for OS/2, Sambe, Windows NT

= TCP/IP, SLIP, PPP XI¥.
Embedded Systems, KAIST

12

Linux Kernel (111)

= Kernel Architecture

= Microkernel
= Windows NT, Minix, Hurd

= &% kernel2 inter-process communication, memory @] S9] XA

O] JIsttE JIXIMH 1] compact OFLE.

« 0S9| J|Et JISE2 microkerneldl S0 CI0I HEE ul SISt
XEX] -

a
]
o=
=
——

X, Bal
ANQ
2 7

Mo

—
——

o |
=
=
=

M

(o]
—

[0

Ct.
Z X=0HH wHIot 20l0tC
ZHHOLLL

0
|00

= N 40
0x F>
FO (i
B> rlo

[0
ue 12 n

=
=
9l

L=

. B
Overall optimizationQ] O{ L}
IPCI} & {0ILL.
= Single kernel
= Linux (But modular construction)
= =& processorfil M= =20t} (i386)
= Run-time X| X9}
Embedded Systems, KAIST

13

Linux Kernel (1V)

= Linux kernel 2.0 for Intel architecture

= 470,000 lines of C code
= 165,000 lines for 1.0

= 5% for Kernel (process and memory management)
= 8,000 lines of Assembly code

= Components
: Item
= Device driver
= Network
= VFS
» File systems
= Initialization
« Math Coprocessor
= Miscellaneous

Embedded Systems, KAIST

C code

377,000
25,000
13,500
50,000

4,000

20,000

ASM lines

100

2,800
3,550

14

Linux Kernel (V)

= LInux Process Status
= Running
= In user mode

System call
= Via software interrupt

« Can wait for a specific event

Return from system call

= After system call or interrupt service
= Check for scheduler and signal

Interrupt routine

= Generated by hardware
Waiting

« Wait for an external event
Ready

Running

Syscall

= Compete with other process to obtain the processor.

Embedded Systems, KAIST

15

Linux Kernel (VI)

= Data Structure
= Task structure: struct task_struct {...} for each task

= Volatile long state; TASK_RUNNING, TASK_STOPPED, ...
= Long counter; Process tick. Sub-priority
= Long priority; Process priority

= Unsigned long signal; Bit mask for signal reception

= Unsigned long blocked; Another bit mask for other signals

= Unsigned long flags; System status flag. PF_PTRACRED etc.
= Int errno; Error code for the last system call

= Int debugreg|8]; x86 debug registers for ptrace

= Struct exec _domain exec_domain;
2} T2 YA ES0] emulate &1 010F Ol= unix0ll LHSE D= MY

= Struct task_struct *next_task;
= Struct task_struct *prev_task; Double linked list.

R Parent & child, memory management
= Int pid, pgHl, session, leader; Process id, group, session, leader
R File, timing, semaphore, wait

Embedded Systems, KAIST

Linux Kernel (VII)

= Data Structure (I1)
= Process table: struct task_struct *task[NR_TASKS];

= Struct task_struct init_task; Start task for double linked list
= Struct task struct current; Current task
= Task_ struct *current_set[NR_CPUS] SMP

= File structure: Struct file { ... }

= Mode tf mode; Access mode: R, W, RW

« Loff t f pos; Read/write pointer (64-bits)
= Unsigned short f_flags; File access control

= Unsigned short f _count; Reference counter

« Struct *file *f _next, *f _prev; Double linked list

= Struct inode *f_inode; Inode structure

= Struct file_operations *f_op; File operations table pointer

Embedded Systems, KAIST

17

Linux Kernel (VIII)

= Data Structure (111)

= Queue
= Struct wait_queue {
Struct task_struct *task;
Struct wait_queue *next;
=}
= Semaphore
= Struct semaphore {
Int count;
Struct wait_queue *wait;
-}
= Timer
= Struct timer_list {
Struct timer_list *nest, *prev;
Unsigned long expires;
Unsigned long data;
Void (*function) (unsigned long);

-}

[]
Embedded Systems, KAIST

Wait

82 ol

Timed action

Linux Kernel (1X)

m Scheduler

= Scheduler classes Set by sched_setscheduler()

« SCHED FIFO
First-In First_Out
Run from start to finish

« SCHED RR
Round robin
Run during a specified time slot

« SCHED OTHER
Classic Unix scheduling

= Schedule() &= kernel/sched.c
« MI|IMoZ SEL| 00t OF= routine (Timer interrupt)
«» =2 SUH| process EH
= ME2 XSMA process=E 0| Y.
Embedded Systems, KAIST

19

Linux Kernel (X)

= System Call Mechanism
= User mode to system mode
= Via software interrupt 0x80

= Pseudo code system_call(int sys call num, sys_call_args) {
= SAVE ALL; // Macro in entry.S
« If (sys_call hum >= NR_syscalls)
errno = -ENOSYS;
= Else {
If (current->flags & PT_TRACESYS) {
Syscall_trace;
Errno = (*sys_call table[sys_call num])(sys_call args);
Syscall trace;
} else
Errno = (*sys_call table[sys_call num])(sys_call args);

}

Embedded Systems, KAIST

20

Linux Kernel (XI)

= System Call Mechanism (11)

= Pseudo code for return form system call

= If (need _resched) {
Reschedule;
scehdule();
Goto ret_from _sys_call;

by

If (current->singal & ~current->blocked) {
Signal_return;
Do_signal();

}

Exit_now:
RESTORE_ALL,;

Embedded Systems, KAIST

21

Linux Kernel (XI1)

= System Call Examples
m Getpld
= Asmlikage int sys_getpid(void)
{

Return current->pid,;

}

= Pause
»= Asmlinkage int sys_ pause(void)

{

current->state = TASK_INTERRUPTIBLE;

schedule();
return —-ERESTARTNOHAND:;

}

Embedded Systems, KAIST

22

Linux Kernel (XI11)

= Memory Manager

= Virtual memory management
= Memory page
4 Kbytes/page for PC, 8 Kbytes for Alpha

= Linear memory mapping
Linear address =
Page directory +
Page middle directory +
Page table +
Offset

= Dynamic memory allocation in kernel

= Void *kmalloc(size t size, int priority);
= Void kfree(void *obj);

Embedded Systems, KAIST

23

Linux Kernel (X1V)

= Inter-Process Communication (1PC)

Kernel

Process

Network

Resource sharing

Data structure,

Shared memory,

data exchange

buffer file, mmap
Synchronization Wait queue, SysV semaphore, -
semaphore file locking
Connectionless Signal SysV message, | Datagram sockets

Unix domain
sockets in
datagram mode

(UDP)

Connection-
oriented data
exchange

Pipes, Named
pipes, Unix
domain sockets in
stream mode

Stream sockets
(TCP)

Embedded Systems, KAIST

24

References

= Linux Boot Process

= Search Internet

s Linux Kernel

= R. Magnus, et al., “Linux Kernel Internals”, 1999, Addison Wesley

Embedded Systems, KAIST 25

	Embedded SystemsCh 14BLinux Kernel
	Overview
	4. Linux Boot Process
	Linux Boot Process (II)
	Linux Boot Process (III)
	Linux Boot Process (IV)
	Linux Boot Process (V)
	Linux Boot Process (VI)
	Linux Boot Process (VII)
	Linux Boot Process (VIII)
	5. Linux Kernel
	Linux Kernel (II)
	Linux Kernel (III)
	Linux Kernel (IV)
	Linux Kernel (V)
	Linux Kernel (VI)
	Linux Kernel (VII)
	Linux Kernel (VIII)
	Linux Kernel (IX)
	Linux Kernel (X)
	Linux Kernel (XI)
	Linux Kernel (XII)
	Linux Kernel (XIII)
	Linux Kernel (XIV)
	References

