Locating Sensor Nodes in Time and Space

Kay Römer ETH Zürich Switzerland

Outline

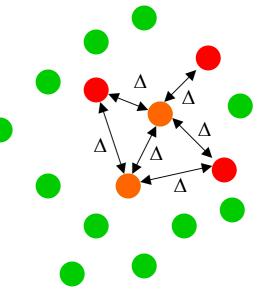
- Why are time and location important in sensor networks?
- Why are they difficult to obtain?
- Our approaches
 - Localization
 - Time synchronization
- Application experience

Why Needed?

Quak!

Quak!

- Data Evaluation
 - Identify cause of real-world events
 - Separate distinct events
 - Fuse data from distributed sensors
- Addressing
 - Specify space-time regions to address sensor nodes, rather than ID-based addressing
- Distributed Coordination
 - Coordinate actions on distributed sensors
 - E.g., turn radio on/off
- Traditional uses


Why Difficult?

- Restricted size/cost/resources/energy
 - Precludes many traditional approaches and enabling technologies
- Network dynamics
 - Hardware failures, network partitions, obstructions, mobility, high/variable latency
- Scale of deployments

 ensly deployed nodes
 untethered operation
 ture, without manual configuration

Typical Approach

- Applies both to time sync and localization
- Few Anchors
 - Known time/location (via out-of-band mechanism)
 - >=1 for time, >=3 for location, but typically many more
 - "Well" placed
- Other nodes
 - Measure offset Δ to nodes with known t/l
 - >=1 for time, >=3 for location
 - Infer own t/l

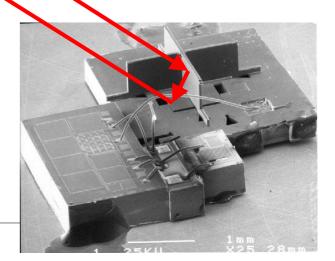
Potential Problems

Accuracy

- Distance from to anchors
- Number of anchors
- Placement of anchors
- Accuracy of Δ measurements
- Infrastructure
 - Number and placement of anchors matters
 - Out-of-band mechanism for anchor synchronization
- Energy overhead
 - Proactive, always active
- Robustness
 - (Temporary) network partitions, ...

Solutions?

• Are there solutions to these problems?

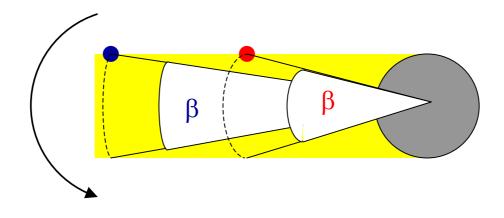

The Lighthouse Location System for Smart Dust

Locating Smart Dust

- How to localize large populations of "Smart Dust"?
 - Tiny (mm³) autonomous devices
 - Sensing, computing, wireless comm., power supply
- Key issues we want to address
 - Challenging device features
 - Energy efficiency
 - Scalability
 - Accuracy

BST Smart Dust Prototype

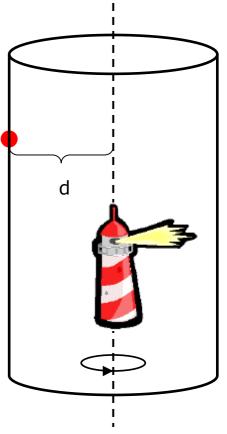
- Developed at UC Berkeley
- Avoid radio communication
 - Antennas larger than whole device
 - Transceiver power consumption
- Passive laser-based communication
 - Downlink: base station points modulated laser at dust particle
 - Uplink: dust modulates and reflects beam
 - Laser sweeps area of interest



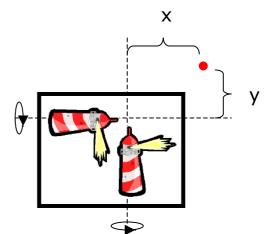
Lighthouse Approach

- Reuse dust node's optical receiver for localization
- Infer location from laser light emitted by a (modified) base station
- Nodes do this autonomously
 - No communication with other nodes
 - No interaction with base station
 - "Passive observation"

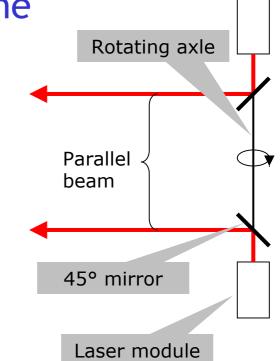
Lighthouse Approach


- Special Lighthouse with parallel beam
 - Observer looks at lighthouse

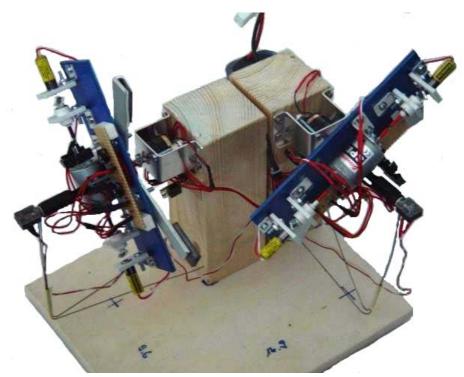
 β depends on observers distance from lighthouse rotation axis!


Lighthouse Approach

- We obtain distance to the lighthouse rotation axis!
- All observer locations with a given d form the hull of a cylinder


Location System

- 2D: two lighthouses with perp. axes
 - Rotation axes define coordinate system
 - Distances from axes are 2D coordinates
 - Combine lighthouses into single device
- 3D: three lighthouses
 - Intersection of three cylinders


Lighthouse Implementation

- Beam generation
 - Two laser beams form outline of wide parallel beam
 - Rotating 45° mirrors
- Beam not parallel
 - More complex non-linear lighthouse model
 - Iterative solution
 - Lighthouse calibration
 - See MobiSys 03 paper for details

Lighthouse Prototype

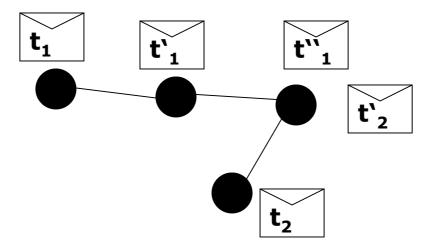
- Based on two rotating laser beams
 - Two light "cones"
 - Virtual parallel beam, 12cm wide
 - 15000 rounds per minute (rpm), 250 Hz
- Mounted on rotating platform
 - 1 rpm

Accuracy

- Room-scale experiment (6m x 6m)
 - Mean error ~2% of distance
 - Standard deviation ~0.75% of distance
- Main sources of inaccuracies
 - Mechanical vibrations
 - Flutter of platform rotation
 - Beam/platform rotation speed
- Can be significantly improved with MEMS technology

Conclusion

- Scalable
 - No inter-node communication
 - Nodes autonomously compute own location
- Energy efficient
 - Nodes do not emit any signals, passive observation
- Fits the constraints of Smart Dust
 - No additional hardware on the nodes
 - Low computing, memory footprint
 - Single base station device
- Accuracy
 - Error within 2% of distance from basestation


Timestamp Synchronization

Time Sync for Sensor Nets

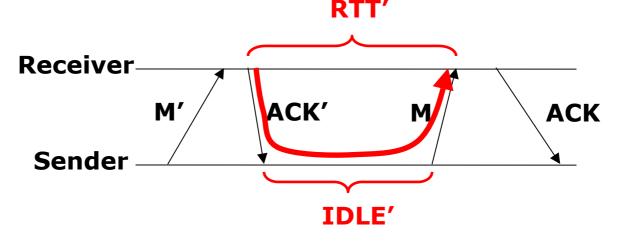
- Traditional network time sync
 - Sync all nodes, all of the time, at highest possible precision
 - Based on continuously synchronizing clocks
- Key issues we want to address
 - Energy efficiency
 - Scalability
 - Robustness


Basic Approach

- Synchronize clock readings (timestamps) instead of clocks
 - Sufficient for many applications
 - Can be done on demand
 - Can be piggybacked on data transfers

Timestamp Synchronization

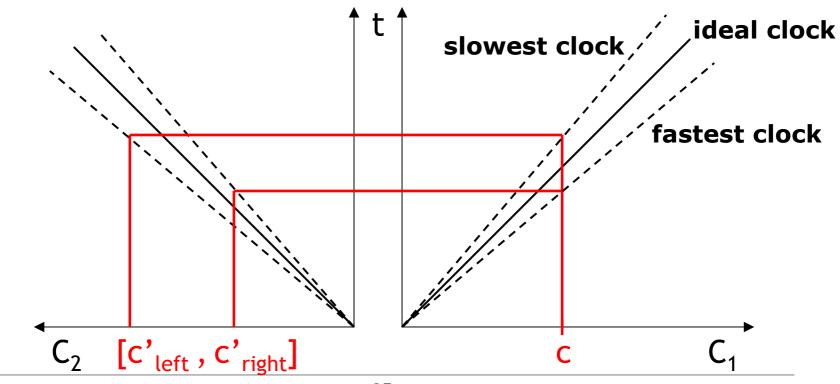
- Unsynchronized local clocks
- Messages carry timestamps
- Timestamps are transformed to receiver's time upon message exchange


Uncertainty intervals instead of time instants due to clock inaccuracies

Timestamp Transformation

- Determine age of time stamp and subtract from time of arrival
 - Age := storage time + transfer time
 - Storage time := Σt_{send} - t_{revc}
 - Transfer time := Σ message delays

Message Delay


 Receiver needs to know message delay
 D for each message received from an adjacent node

- Sender knows: 0 < D < RTT IDLE</p>
- Receiver knows: 0 < D < RTT' IDLE'</p>

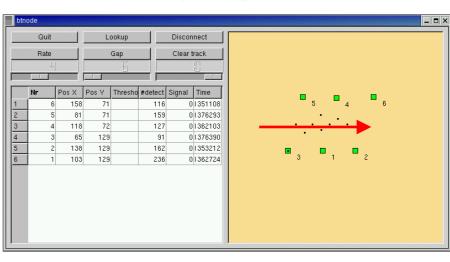
Time Transformation

- Each node i equipped with computer clock C_i which approximates real-time t
- Clocks with bounded drift

Conclusion

- Energy efficient
 - Only syncs where and when needed by the application
 - Can be piggybacked to existing message exchanges
 - Few additional message exchanges
- Scalable
 - Local interactions
- Robust
 - Works across temporary network partitions
- Accuracy: few milliseconds
 - 5 hops
 - 1000 seconds timestamp age
- See MobiHoc 01 paper for details

Application Experience


Tracking Application

- Proof of concept for time sync and localization approaches
- Randomly deployed sensor nodes
 - Detect presence of target
 - Send notification to base station
- Base station
 - Fuses notifications using time/location
 - Displays track

Prototype Implementation

Car

- Remote-controlled toy_car
- IR light emitter
- Sensor nodes
 - BTnodes
 - IR detector
- Evaluation
 - Test setup: 6 nodes within 1m²
 - Average error < 12cm
 - Maximum error < 30cm
- See EWSN 04 paper for details

