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Outline
Why are time and location important in 
sensor networks?
Why are they difficult to obtain?
Our approaches
– Localization
– Time synchronization

Application experience
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Why Needed?
Data Evaluation
– Identify cause of real-world events
– Separate distinct events
– Fuse data from distributed sensors

Addressing
– Specify space-time regions to address sensor 

nodes, rather than ID-based addressing

Distributed Coordination
– Coordinate actions on distributed sensors
– E.g., turn radio on/off

Traditional uses

Quak!Quak!
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Why Difficult?
Restricted size/cost/resources/energy
– Precludes many traditional approaches and 

enabling technologies
Network dynamics
– Hardware failures, network partitions, 

obstructions, mobility, high/variable 
latency

Scale of deployments
ensly deployed nodes

untethered operation
ture, without manual configuration
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Typical Approach

∆
∆
∆

∆∆

∆

Applies both to time sync and localization
Few Anchors
– Known time/location (via out-of-band 

mechanism)
– >=1 for time, >=3 for location,

but typically many more
– „Well“ placed

Other nodes
– Measure offset ∆ to nodes

with known t/l
– >=1 for time, >=3 for location
– Infer own t/l
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Potential Problems
Accuracy
– Distance from to anchors
– Number of anchors
– Placement of anchors
– Accuracy of ∆ measurements

Infrastructure
– Number and placement of anchors matters
– Out-of-band mechanism for anchor synchronization

Energy overhead
– Proactive, always active

Robustness
– (Temporary) network partitions, ...
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Solutions?
Are there solutions to these problems?
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Locating Smart Dust
How to localize large populations of 
„Smart Dust“?
– Tiny (mm3) autonomous devices
– Sensing, computing, wireless comm., power 

supply

Key issues we want to address
– Challenging device features
– Energy efficiency
– Scalability
– Accuracy
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Smart Dust Prototype
Developed at UC Berkeley
Avoid radio communication
– Antennas larger than whole device
– Transceiver power consumption

Passive laser-based communication
– Downlink: base station points modulated

laser at dust particle
– Uplink: dust modulates

and reflects beam
– Laser sweeps area of

interest

BST
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Lighthouse Approach
Reuse dust node´s optical receiver for 
localization
Infer location from laser light emitted 
by a (modified) base station
Nodes do this autonomously
– No communication with other nodes
– No interaction with base station
– „Passive observation“
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Lighthouse Approach
Special Lighthouse with parallel beam
– Observer looks at lighthouse

β β

β depends on observers distance from 
lighthouse rotation axis!
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Lighthouse Approach
We obtain distance to the lighthouse 
rotation axis!
All observer locations
with a given d form the
hull of a cylinder

d
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Location System
2D: two lighthouses with perp. axes
– Rotation axes define

coordinate system
– Distances from axes are 2D

coordinates
– Combine lighthouses into

single device

3D: three lighthouses
– Intersection of three cylinders

x

y
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Lighthouse Implementation
Beam generation
– Two laser beams form outline

of wide parallel beam
– Rotating 45° mirrors
Beam not parallel
– More complex non-linear

lighthouse model
– Iterative solution
– Lighthouse calibration
– See MobiSys 03 paper for details

Parallel
beam

Laser module

45° mirror

Rotating axle
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Lighthouse Prototype
Based on two rotating laser beams
– Two light „cones“
– Virtual parallel beam, 12cm wide
– 15000 rounds per minute (rpm), 250 Hz

Mounted on
rotating
platform
– 1 rpm
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Accuracy
Room-scale experiment (6m x 6m)
– Mean error ~2% of distance
– Standard deviation ~0.75% of distance

Main sources of inaccuracies
– Mechanical vibrations
– Flutter of platform rotation
– Beam/platform rotation speed

Can be significantly improved with 
MEMS technology
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Conclusion
Scalable
– No inter-node communication
– Nodes autonomously compute own location

Energy efficient
– Nodes do not emit any signals, passive observation

Fits the constraints of Smart Dust
– No additional hardware on the nodes
– Low computing, memory footprint
– Single base station device

Accuracy
– Error within 2% of distance from basestation
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Time Sync for Sensor Nets
Traditional network time sync
– Sync all nodes, all of the time, at highest 

possible precision
– Based on continuously synchronizing clocks

Key issues we want to address
– Energy efficiency
– Scalability
– Robustness
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Basic Approach
Synchronize clock readings 
(timestamps) instead of clocks
– Sufficient for many applications
– Can be done on demand
– Can be piggybacked on data transfers

t2

t‘1 t‘‘1

t‘2

t1
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Timestamp Synchronization
Unsynchronized local clocks
Messages carry timestamps
Timestamps are transformed to receiver´s 
time upon message exchange

Uncertainty intervals instead of time 
instants due to clock inaccuracies
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Timestamp Transformation
Determine age of time stamp and 
subtract from time of arrival
– Age := storage time + transfer time

– Storage time := Σ tsend-trevc

– Transfer time := Σ message delays
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Message Delay

IDLE

RTT

Receiver needs to know message delay 
D for each message received from an 
adjacent node

M’ ACK’

IDLE’

RTT’

Receiver

Sender

M ACK

Sender knows: 0 < D < RTT - IDLE
Receiver knows: 0 < D < RTT’ - IDLE’
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Time Transformation
Each node i equipped with computer 
clock Ci which approximates real-time t
Clocks with bounded drift

C1

t

C2

ideal clock

fastest clock

slowest clock

[c’left , c’right] c
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Conclusion
Energy efficient
– Only syncs where and when needed by the 

application
– Can be piggybacked to existing message exchanges
– Few additional message exchanges

Scalable
– Local interactions

Robust
– Works across temporary network partitions

Accuracy: few milliseconds
– 5 hops
– 1000 seconds timestamp age

See MobiHoc 01 paper for details
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Tracking Application
Proof of concept for time sync and 
localization approaches
Randomly deployed sensor nodes
– Detect presence of target
– Send notification to base station

Base station
– Fuses notifications

using time/location
– Displays track



29

Prototype Implementation
Car
– Remote-controlled toy car
– IR light emitter

Sensor nodes
– BTnodes
– IR detector

Evaluation
– Test setup: 6 nodes

within 1m2

– Average error < 12cm
– Maximum error < 30cm

See EWSN 04 paper
for details
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