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3. The Berkeley motes environment 

3.1. Hardware 

3.1.1. Overview 

Researches at UC Berkeley have developed small sensor devices , called motes 

[Cro1] ,and an operating system that is especially suited to running on them , 

called TinyOS  [Cro3, Cro4]. 

In detail there are two kind of motes developed: Mica2 (see Figure 3.1.1-1) and 

Mica2dot (see Figure 3.1.1-2 ) ; they are quite similar functionality but they 

deeply differ in form-factor . 

 

 
Figure 3.1.1-1 

 

 
Figure 3.1.1-2 

 

Mica2 and Mica2dot motes both have a 4Mhz , 8bit Atmel microprocessor. Their 

RFM ChipCon radios run at 19.2 Kbits/second over a single shared CSMA/CA 

(carrier-sense multiple access collision avoidance) channel. Like all wireless radio 

ChipCon radio is half-duplex, which means that they cannot detect collisions 
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because they cannot listen to their own traffic. Instead, they try to avoid collisions 

by listening to the channel before transmitting and backing off for a random time 

period when it is in use (for more detail see MAC layer in 3.2 ). 

Motes have an external 32kHz clock that the TinyOS operating system can 

synchronize with neighboring motes to approximately +/- 1 ms to ensure that 

neighbors are powered up and listening when there is information to be exchanged 

between them. 

Both generation of Mica motes (mica2 and mica2dot) are equipped with 512KB 

of non-volatile flash memory that can be used for logging and data collection. 

Motes hardware has a 51-pin connector that allows expansion boards to be added. 

Typically a sensor board is placed in the connector which adds a suite of sensors 

to the device. 

Table 3.1.1-1 summarizes hardware characteristics of Mica2 and Mica2dot nodes: 

 

 
Table 3.1.1-1 

 

 

  

 

 

 

In the motes, the AVR interfaces with four hardware blocks (Radio, LEDS, Flash 
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Memory and Sensor board / Programming interface). The general hardware 

organization is presented in Figure 3.1.1-3: 

 
Figure 3.1.1-3 

 

 

3.1.2. Processor 

The microcontroller unit ( MCU ) is responsible for control of the sensors and the 

execution of communication protocols and signal processing algorithms on the 

gathered sensor data. 

MCU supports various operating. Central unit of a sensor node is a low-power 

microcontroller that controls all functional parts of the node. Software for such a 

microcontroller has to be resource-aware on the one hand. On the other hand, 

several Quality-of-Service (QoS) aspects have to be met by sensor node software, 

such as latency, processing time for data fusion or compression, or flexibility 

regarding routing algorithms or MAC techniques. 

Conventional software development for microcontrollers usually covers hardware 

abstraction layer, operating system and protocols  and application layer. Often 

software for microcontrollers is limited to an application specific monolithic 
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software block optimized for performance and resource usage. Microcontrollers 

are often developed and programmed for a specific, well-defined task. This 

limitation of the application domain leads to high performance embedded systems 

even with strict resource constraints. Accordingly if the application domain of an 

embedded system changes often the whole microcontroller is replaced instead of 

writing and downloading a new program. 

For sensor nodes, application specific microcontrollers are preferred instead of 

general purpose microprocessors. This is because of the small size and the low 

energy consumption of those controllers. However, requirements concerning a 

sensor node exceed the main characteristics of a conventional microcontroller and 

its software. The main reason for this is the dynamic character of a sensor node’s 

task. Sensor nodes can adopt different tasks such as data acquisition, data 

forwarding, or information processing. 

 

The processor within the Mica2 is an Atmel Atmega128 AVR. AVR is an 8-Bit 

Harvard architecture, with separate instruction and data memory. 

AVR micro controllers provide several sleep modes. The purpose of these modes 

is to provide a way of suspending program execution when necessary, thereby 

reducing power consumption.  
 

 

3.1.3. Leds 

Three Programmable LEDs are connected to the AVR in the Mica2 motes. These 

may be used for status and output of digital values. 

 

3.1.4. Flash Memory 

In order to allow permanent storage and data logging in the motes, a 512KB Serial 

Flash memory chip is attached to one of the AVR's UART ports. If installed in 

conjunction with a simple co-processor, this secondary memory could be also 

used for over-the-air reprogramming of the main microcontroller. 
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3.1.5. Radio 

Typical communication distances for low power wireless radios such as those 

used in mica2 and mica2dot motes range from a few meters to around hundred 

meters depending on transmission power and environmental conditions. Such 

short ranges mean that almost all real sensor network deployments must make use 

of multi-hop communication where intermediate nodes relay information for their 

peers. 

In the case of mica2 and mica2dot the radio uses a Manchester encoding 

providing a delivered bandwidth of 19.2 kbps. 

Manchester encoding is used to avoid synchronization errors which commonly 

occur in demodulation phase-locked-loop circuits when long sequences of 1’s or 

0’s are received. 

The sensor node’s radio enables wireless communication with neighboring nodes 

and the outside world.  

The Mica2 and Mica2dot use a low-power, single-chip UHF transceiver from 

Chipcom as its radio component. The CC1000 is designed for very low power and 

very low voltage wireless applications. The circuit is mainly intended for the ISM 

(Industrial, Scientific and Medical) and SRD (Short Range Device) frequency 

bands at 315, 433, 868 and 915 MHz, but can easily be programmed for operation 

at other frequencies in the 300- 1000 MHz range. The main operating parameters 

of CC1000 can be programmed via a serial bus, thus making CC1000 a very easy 

to use transceiver. CC1000 is configured via a simple 3-wire interface. There are 

36 8-bit configuration registers, each addressed by a 7-bit address. A Read/Write 

bit initiates a read or write operation.  

A full configuration of CC1000 requires sending 29 data frames of 16 bits each (7 

address bits, R/W bit and 8 data bits). All registers are also readable. Data is 

transferred to and from the AVR microcontroller via a dedicated SPI (Serial 

Peripheral Interface) Bus, and the Radio generates one interrupt every 8 bits when 

in receive mode. 

In general radio can operate in four distinct modes of operation: Transmit , 

Receive , Idle , Sleep (Off). So it is very important to completely shut down the 
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radio rather than transitioning to Idle mode when it is not transmitting or receiving 

data. 
 

So features of mica2 radio include: 

- Frequency selectable from 300-1000 Mhz; 

- FSK modulation with data rates up to 19.2 Kbps; 

- Hardware based Manchester encoding; 

- Integrated bit synchronizer; 

- -110 dBm sensitivity; 

- selectable power states; 

- digital control interface using special function register; 

 

The radio module as default setting makes the following operational state after 

being issued StdControl.init() and StdControl.start(): 

- set default frequency channel; 

- set 19.2 kbps data rate; 

- set high sensitivity mode (longest settling time); 

- set 0 dBm transmit power; 

- turn on radio in receiving mode; 

 

The CC1000 uses a digital frequency synthesizer to select a particular 

send/receive channel. Specific control registers are programmed with values 

according to the channel and FSK separation used. Because of the nature of the 

synthesizer it is only capable of reproducing discrete frequencies in the operating 

range of the device. 

The TinyOS stack and related tools take the guesswork out of tuning the CC1000 

for the mica2 series motes. The stack will automatically compute the nearest 

channel for a given frequency and program the necessary register values (manual 

tuning) or use pre-determined values from a preset table (preset tuning). 

The control path function CC1000Control.TuneManual() takes a desired 

frequency in Hz , computes the optimal achievable frequency , determines the 

necessary control register values , programs the CC1000 and calibrates the device. 

It returns the frequency, in Hz, of the actual channel. Defining the compiler flag 
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CC1K_DEF_FREQ=x sets the default frequency for the device when compiling 

the application. Using manual tuning does not affect the modem control registers ( 

default data rate is 38.4 Kbaud/19.2 Kbps ). 

The control path function CC1000Control.TunePreset() takes a given 

index in this table, sets the register values and calibrates the device. 

The data path provides a method of altering the duty cycle state of the radio to 

meet power constraints to set and determine the present duty cycle mode for both 

the receiving and transmitting side of the data path.  

 

3.1.6. Sensing Hardware 

Sensor transducers translate physical phenomena to electrical signals and can be 

classified as either analog or digital devices depending on the type of output they 

produce. 

There are several sources of power consumption in a sensor , including: 

- signal sampling and conversion of physical signals to electrical ones 

- signal conditioning 

- analog-to-digital conversion 

While the modular design of the motes allows a wide range of analog and digital 

sensors to be attached to the Sensor Node, the reference sensor board for the mica 

platform is the “Mica Sensorboard " (see Figure 3.1.6-1 ).  

 
Figure 3.1.6-1 
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A variety of sensors have been interfaced with the motes [Cro2] ; a partial list 

includes sensors for light , surface and ambient temperature , acceleration , 

magnetic field , voltage , current ( DC and AC ) , sound volume , ultrasound 

(Figure 3.1.6-2), barometric pressure (Figure 3.1.6-3) , humidity , and solar 

radiation. 

 
Figure 3.1.6-2 

In addition to the above sensors, the board is capable of generating acoustic 

output, using its 4 kHz single tone buzzer. Optional hardware support to detect the 

generated tone on a receiving node is provided by an active bandpass filter and a 

LMC567 tone decoder from National Semiconductor, which has built in phase 

lock loop and adjustable threshold detection. 

 

 

 
Figure 3.1.6-3 
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All modules in the sensor board can be power cycled independently, and are 

power isolated from the Mica's processor through an analog switch.  

 

It is very important the cost of energy required to fetch samples from sensors. 

The variations among sensors are dramatic, both in terms of power usage and time 

to obtain a sample. Some devices, such as pressure and humidity sensors , require 

as long as a second to capture a reading , which means that the per-sample energy 

costs are very high. 

Other devices, such as the passive thermistor, whose resistance varies with 

ambient temperature , require only a few microseconds to sample , and thus 

contribute only a negligible amount to the total energy consumption of the motes. 

 

There are a variety of sensor boards available. The sensor boards allow for a range 

of different sensing modalities as well as interface to external sensor via 

prototyping areas or screw terminals. The following Table 3.1.6-1  lists the 

currently available sensor boards for each mote family. 

 
Table 3.1.6-1 

 

In the measurements we refer there were used Crossbow sensor board 

MTS310CA for mica2 motes that includes the following sensing modalities: 

 

- microphone 

The microphone circuit has two principal uses. The first use is for acoustic 

ranging. The second use is for general acoustic recording and measurement. A 

novel application of the sounder and tone detector is acoustic ranging. In this 

application, a mote pulses the sounder and sends an RF packet via radio at the 
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same time. A second mote listens for the RF packet and notes the time of arrival 

by resetting a timer/counter on its processor. It then increments a counter until the 

tone detector detects the sounder. The counter value is the Time-of-Flight of the 

sound wave between the two motes. The Time-of-Flight value can be converted 

into an approximate distance between motes. Using groups of Motes with 

Sounders and Microphones, a crude localization and positioning system can be 

built 

- sounder: the sounder is a simple 4 kHz fixed frequency piezoelectric 

resonator. 

- light and temperature 

- 2-Axis accelerometer : The sensor can be used for tilt detection, movement, 

vibration, and/or seismic measurement 

- 2-Axis Magnetometer: magnetometer can measure the Earth’s field and other 

small magnetic fields. A useful application is vehicle detection. Successful test 

have detected disturbances from automobiles at a radius of 4,57 meters. 
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3.2. Software 

3.2.1. Traditional OS Architectures 

In traditional OS architectures we have Large memory & storage requirement , 

unnecessary and overkill functionality ( address space isolation,   complex I/O 

subsystem ) , relative high system overhead ( e.g, context switch ) and  these 

architectures require complex and power consuming hardware support.  

Architecture must be: 

- extremely small footprint; 

- extremely low system overhead; 

- extremely low system overhead; 

So we don’t have kernel but direct hardware manipulation , no process 

management but only one process on the fly , no virtual memory but single linear 

physical address space , no dynamic memory allocation bit memory assigned at 

compile time , no software signal or exception but function call instead 

3.2.2. Introduction to TinyOS 

TinyOS is a component-based operating system for sensor networks developed at 

UC Berkeley [Cro3]. TinyOS can be seen as an advanced software framework  

which has a large user community due to its open source character . The 

framework contains numerous pre-built sensor applications and algorithms for 

example multi-hop ad-hoc routing and supports different sensor node platforms. 

Programmers experienced with the C programming language can easily develop 

TinyOS applications written in a proprietary language called NesC 

 

The design of TinyOS is based on the specific sensor network characteristics: 

small physical size, low-power consumption, concurrency-intensive operation, 

multiple flows, limited physical parallelism and controller hierarchy, diversity in 

design and usage, and robust operation to facilitate the development of reliable 

distributed applications. The main intention of the TinyOS developers was 

“retaining energy, computational and storage constraints of sensor nodes by 

managing the hardware capabilities effectively, while supporting concurrency-

intensive operation in a manner that achieves efficient modularity and 
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robustness”. Therefore, TinyOS is optimized in terms of memory usage and 

energy efficiency. It provides defined interfaces between the components which 

reside in neighboring layers. A layered model is shown in Figure 3.2.2-1: 

 

 
Figure 3.2.2-1 

. 

 

TinyOS utilizes an event model instead of a stack-based threaded approach, which 

would require more stack space and multi-tasking support for context switching, 

to handle high levels of concurrency in a very small amount of memory space. 

Event based approaches are the favorite solution to achieve high performance in 

concurrency intensive applications. Additionally, the event-based-approach uses 

CPU resources more efficiently and therefore takes care of the most precious 

resource, the energy. An event is serviced by an event handler. More complex 

event handling can be done by a task. The event handler is responsible for posting 

the task to the task scheduler. Event and task scheduling is performed by a two-

level scheduling structure. This kind of scheduling provides that events, 

associated with a small amount of processing, can be performed immediately, 

while longer running tasks can be interrupted by events. Tasks are handled 

rapidly, however no blocking or polling is permitted. 
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3.2.3. TinyOS design 

In order to achieve the necessary levels of concurrency, TinyOS uses a state 

machine based programming model as opposed to a thread based programming 

model.  By making each component or service a state machine, we are able to 

make very efficient use of CPU and memory resources.  Instead of having to 

allocate multiple stacks for each running application or service, we are able to 

share a single execution context amongst multiple sate machines.  Each 

component uses events and commands to quickly transition from state to state.  

Logically, these state transitions are thought of a instantaneous, requiring very 

few CPU operations.  Each component is temporarily allocated the execution 

context for the duration of these state changes.  It has been added to this model the 

notion of tasks, which allow components to request the CPU execution context in 

order to perform long-running computations. These tasks get scheduled at a later 

date and run to completion.  While they execute atomically with respect to other 

tasks, they can be periodically interrupted by higher priority events.  Currently it 

is used a simple FIFO queue for scheduling, however an alternative scheduling 

mechanism could be easily added. 

A secondary advantage of choosing to structure this programming model after 

finite state machines is that it propagates the hardware abstractions into software.  

Just as hardware bases state machine responds to changes on its I/O pins, our 

components respond to events and commands on their interfaces.   

 

TinyOS consists of the tiny scheduler and a graph of components (Figure 3.2.3-1). 

Components satisfy the demand for modular software architectures. Every 

component consists of four interrelated parts: a command handler, an event 

handler, an encapsulated fixed-size and statically allocated frame, and a bundle of 

simple tasks. The frame represents the internal state of the component. Tasks, 

commands and handlers execute in the context of the frame and operate on its 

state. In addition, the component declares the commands it uses and the events it 

signals. Through this declaration, modular component graphs can be composed. 

The composition process creates layers of components. Higher layer components 

issue commands to lower level components and these signal events to higher level 

components. To provide an abstract definition of the interaction of two 
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components via commands and events, the bi-directional interface is introduced in 

TinyOS 

 

 
Figure 3.2.3-1 

 

Commands are non-blocking requests made to lower layer components. A 

command provides feedback to its caller by returning status information. 

Typically, the command handler puts the command parameters into the frame and 

posts a task into the task queue for execution. The acknowledgment whether the 

command was successful, can be signaled by an event. 

Commands deposit request parameters into the frame , are non-blocking , need to 

return status so postpone time consuming work by posting a task and can call 

lower level commando. 

 

Event handlers are invoked by events of lower layer components, or when directly 

connected to the hardware, by interrupts. Similar to commands, the frame will be 

modified and tasks are posted. Both, commands and tasks, perform a small fixed 

amount of work similar to interrupt service routines. 

Events can call commands, signal events, post tasks, can not be signaled by 

commands; events preempt tasks, not vice-versa , interrupt trigger the lowest level 

events and deposit the information into the frame. 
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Tasks perform the primary work. They are atomic, run to completion, and can 

only be preempted by events. Tasks are queued in a FIFO task scheduler to 

perform an immediate return of event or command handling routines. Due to the 

FIFO scheduling, tasks are executed sequentially and should be short. 

Alternatively to the FIFO task scheduler, priority-based or deadline-based 

schedulers can be implemented into the TinyOS framework. 

Tasks perform computationally intensive work and handle multiple data flows 

 

 

 

 
Figure 3.2.3-2 
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3.2.4. Communication 

Communication stack in TinyOS is shown in Figure 3.2.4-1: 

 

 
Figure 3.2.4-1 

 

In details we take a look at each level: 

 

- RFM  

At this level we can set Operation Mode (transmitting or receiving) , set sampling 

rate , receive one bit , transmit one Bit ,  notify TX/RX is finished and shut down 

RFM. 

 

- Radio Byte 

This level is responsible of bit encoding (Manchester), error detection and 

correction, signal strength and to detect whether current channel is free to 

transmit, otherwise wait for random of clock ticks. 
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- Radio Packet 

At this level there is 16-bit CRC check ( drops packet if fails ) and redundancy 

transmit.  

 

- Messaging 

The activities are packaging ( dividing , combining ) , routing , and support for 

special addresses ( broadcast or UART interface ) 

 

- AM dispatcher 

It’s one byte message type used to direct packet to handlers. This layer follows a 

typical implementation: 

 

if(msg.type == 0)   val =  Handler0(data); 

if(msg.type == 1)    val = Handler1(data); 

…. 

if(msg.type == 255) val = Handler255(data); 

 

User can redefine handler names ( e.g. #define Handler5  NULL_FUNC ) 

 

- Application 

At this level we have content-based routing, consensus algorithm,  location 

service, tracking and sensor data processing. 

 

A simple profiling if we want to send 60 data bytes , we need to invoke (Figure 

3.2.4-2) : 

- messaging layer 1 times; 

- packet layer > 2 times; 

- byte layer > 60 times ; 

- RFM > 480 times; 
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Figure 3.2.4-2 

 

 

 

3.2.5. Active Message 

In TinyOS legacy legacy communication ( TCP/IP, sockets, routing protocols like 

OSPF ) can’t be used because traditional communications uses intensive 

bandwidth and are centered on “stop and wait” semantics. 

In fact with socket/TCP/IP too much memory is used for buffering and threads ; 

furthermore data are buffered in network stack until application threads read it and 

application threads blocked until data is available. 

With WSNs there it the need of real time constraints and low processing 

overhead. 

Active message is a layer responsible of : 

 Integrating communication and computation 

 Matching communication primitives to hardware capabilities 

 Provides a distributed event model where networked nodes send events to 

each other 

 Closely fits the event-based model of TinyOS 

Message contains a user-level handler to be invoked on arrival and data payload 

passed as argument. Message handlers are executed quickly to prevent network 

congestion and provide adequate performance. Event-centric nature enables 

network communication to overlap with sensor-interaction.  

Active Message and TinyOS form “Tiny Active Messages” that support three 

basic primitives : best effort message transmission , addressing and dispatch. 
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With Active Message every message contains the name of an event handler ; the 

sender declares buffer storage in a frame , names a handler , requests transmission 

and does completion signal. On the other side receiver’s event handler is fired 

automatically in a target node. 

So there is no blocked or waiting threads on the receiver and we have a single 

buffering. 

A typical send message code could be: 

 

char TOS_COMMAND(INT_TO_RFM_OUTPUT)(int val){ 

 int_to_led_msg* message = 

(int_to_led_msg*)VAR(msg).data; 

 if (!VAR(pending)) { 

   message->val = val; 

   if 

(TOS_COMMAND(INT_TO_RFM_SUB_SEND_MSG)(TOS_MSG_BCAST,   

      AM_MSG(INT_READING), &VAR(msg))) { 

     VAR(pending) = 1; 

     return 1; 

   } 

 } 

 return 0; 

} 

 

Initially there is application access to message buffer ( VAR(msg.data ) 

through a cast to a defined format ( int_to_led_msg* ). Then there is a check 

( if (!VAR(pending) ) ) , it’s build the message and request transmission 

through a destination identifier (TOS_MSG_BCAST) and a handler identifier 

(AM_MSG(INT_READING)). After that the state is marked busy 

(VAR(pending)=1 )  
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3.2.6. NesC 

The basic concepts behind nesC are: 

• Separation of construction and composition: programs are built out of 

components, which are assembled (“wired”) to form whole programs. 

Components define two scopes, one for their specification (containing the names 

of their interface instances) and one for their implementation. 

Components have internal concurrency in the form of tasks. Threads of control 

may pass into a component through its interfaces. These threads are rooted either 

in a task or a hardware interrupt. 

• Specification of component behavior in terms of set of interfaces. Interfaces may 

be provided or used by the component. The provided interfaces are intended to 

represent the functionality that the component provides to its user, the used 

interfaces represent the functionality the component needs to perform its job. 

• Interfaces are bi-directional: they specify a set of functions to be implemented 

by the interface’s provider (commands) and a set to be implemented by the 

interface’s user (events). This allows a single interface to represent a complex 

interaction between components (e.g., registration of interest in some event, 

followed by a callback when that event happens). This is critical because all 

lengthy commands in TinyOS (e.g. send packet) are non-blocking; their 

completion is signaled through an event (send done). By specifying interfaces, a 

component cannot call the send command unless it provides an implementation of 

the sendDone event. Typically commands call downwards, i.e., from application 

components to those closer to the hardware, while events call upwards. Certain 

primitive events are bound to hardware interrupts. 

• Components are statically linked to each other via their interfaces. nesC is 

designed under the expectation that code will be generated by whole-program 

compilers. This allows for better code generation and analysis. An example of this 

is nesC’s compile-time data race detector.  

• The concurrency model of nesC is based on run-to-completion tasks, and 

interrupt handlers which may interrupt tasks and each other. The nesC compiler 

signals the potential data races caused by the interrupt handlers. 
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As it was said the nesC model is formed by interfaces and components. 

An interface could be used or can be provided ; components are modules or 

configurations. 

An application is a graph of components (Figure 3.2.6-1). 

 
Figure 3.2.6-1 

 

Interfaces are used for grouping functionality like split-phase operation ( send , 

sendDone ) or standard control interface ( init , start , stop ). They describe bi-

directional interaction ; interface provider must implement commands while 

interface user must implement events. 

For instance the interface clock.nc can contains: 

 

interface Clock { 

   command result_t setRate (char interval, char 

scale); 

   event result_t fired (); 

} 
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Modules implement a component’s specification with C code . An example is the 

following Mycomp module: 

 

module MyComp { 

   provides interface X; 

   provides interface Y; 

   uses interface Z; 

} 

implementation { 

…// C code 

} 

 

Configurations implements a component by wiring together multiple components. 

Wiring means connect interfaces, commands, events together : 

 

configuration MyComp { 

   provides interface X; 

   provides interface Y; 

   uses interface Z; 

} 

implementation { 

…// wiring code 

} 

Obviously connected elements must be compatible (interface-interface, command-

command, event-event) 
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3.2.7. TinyOS application 

In Figure 3.2.7-1 there is a representation of a complete application.  The lowest 

layer of components directly correspond to the hardware of the system. They 

simply map the physical hardware into our software based component model.  

The user application sits at the top of the hierarchy issuing commands down into 

the lower level components and responding to events propagating up from the 

system components.  During execution, all events are directly or indirectly 

triggered from the propagation of hardware events up through the component 

graph.  This comes directly from the state machine based programming model, 

where state changes are the result of changes on the input pins. 

 

 
Figure 3.2.7-1 

 
 

Now let’s look at “Blink” application ; this application simply causes the red LED 

on the mote to turn on and off at 1 Hz. 

Blink consists of two components: a module, called BlinkM.nc, and a 

configuration, called Blink.nc. All applications require a single top-level 

configuration, which is typically named after the application itself. In this case 

Blink.nc is the configuration for the Blink application and the source file that 
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the NesC compiler uses to generate the executable for the mote. BlinkM.nc, on 

he other hand, actually provides the implementation of the Blink application. 

Blink.nc is used to wire the BlinkM.nc module to other components that the 

Blink application requires. The reason for the distinction between modules and 

configurations is to allow a system designer to quickly “snap together” 

applications. For example, a designer could provide a configuration that simply 

wires together one or more modules, none of which she actually designed. 

Likewise, another developer can provide a new set of “library” modules that can 

be used in a range of applications. 

The nesC compiler, ncc, compiles a nesC application when given the file 

containing the top-level configuration. Typical TinyOS applications come with a 

standard Makefile that allows platform selection and invokes ncc with appropriate 

options on the application's top-level configuration. 

Let's look first at the module Blink.nc: 

 

configuration Blink { 

implementation { 

components Main, BlinkM, SingleTimer, LedsC; 

Main.StdControl -> BlinkM.StdControl; 

Main.StdControl -> SingleTimer.StdControl; 

BlinkM.Timer -> SingleTimer.Timer; 

BlinkM.Leds -> LedsC; 

} 

} 

 

The first two lines, 

 

configuration Blink { 

} 

 

simply state that this is a configuration called Blink. Within the empty braces here 

it is possible to specify uses and provides clauses, as with a module. 



Alessio Falchi                                     Chapter 3 – The Berkeley motes environment 

 41

The actual configuration is implemented within the pair of curly bracket following 

key word implementation. The components line specifies the set of components 

that this configuration references, in this case Main, BlinkM, SingleTimer, 

and LedsC. The remainder of the implementation consists of connecting 

interfaces used by components to interfaces provided 

by others. 

Main is a component that is executed first in a TinyOS application. To be precise, 

the Main.StdControl.init() command is the first command executed in 

TinyOS followed by Main.StdControl.start(). Therefore, a TinyOS 

application must have Main component in its configuration. StdControl is a 

common interface used to initialise and start TinyOS 

components. 

The following two lines in Blink configuration: 

  

Main.StdControl -> SingleTimer.StdControl; 

Main.StdControl -> BlinkM.StdControl; 

 

wire the StdControl interface in Main to the StdControl interface in both 

BlinkM and SingleTimer.StdControl.init() and 

BlinkM.StdControl.init() will be called by 

Main.StdControl.init(). The same rule applies to the start() and 

stop() commands. 

The BlinkM module uses the interface Leds, so Leds.init() is called 

explicitly in BlinkM.init(). 

nesC uses arrows to determine relationships between interfaces.  

The line BlinkM.Timer -> SingleTimer.Timer is used to wire the 

Timer interface used by BlinkM to the Timer interface provided by 

SingleTimer. BlinkM.Timer on the left side of the arrow is referring to the 

interface called Timer (/tos/interfaces/Timer.nc), whereas 

SingleTimer.Timer on the right side of the arrow is refering to the 

implementation of Timer (/tos/lib/SingleTimer.nc).  

Now let's look at the module BlinkM.nc: 
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module BlinkM { 

provides { 

interface StdControl; 

} 

uses { 

interface Timer; 

interface Leds; 

} 

} 

 
Figure 3.2.7-2 

 

The first part of the code states that this is a module called BlinkM and declares 

the interfaces it povides and uses. The BlinkM module provides the interface 

StdControl. This means that BlinkM implements the StdControl 

interface. The BlinkM module also uses two interfaces: Leds and Timer. This 

means that BlinkM may call any command declared in the interfaces it uses and 

must also implement any events declared in those interfaces. The Leds interface 

defines several commands like redOn(), redOff(), and so forth, which turn 

the different LEDs (red, green, or yellow) on the mote on and off.  

Because BlinkM uses the Leds interface, it can invoke any of these commands. 

However Leds is just an interface: the implementation is specified in the 
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Blink.nc configuration file. An event is a function that the implementation of 

an interface will signal when a certain event takes place. In this case, the 

fired() event is signaled when the specified interval has passed. This is an 

example of a bi - directional interface: an interface not only provides commands 

that can be called by users of the interface, but also signals events that call 

handlers in the user. A module that uses an interface must implement the events 

that this interface uses. 

Let's look at the rest of BlinkM.nc to see how this all fits together: 

 

implementation { 

command result_t StdControl.init() { 

call Leds.init(); 

return SUCCESS; 

} 

command result_t StdControl.start() { 

return call Timer.start(TIMER_REPEAT, 1000) ; 

} 

command result_t StdControl.stop() { 

return call Timer.stop(); 

} 

event result_t Timer.fired(){ 

call Leds.redToggle(); 

return SUCCESS; 

} 

} 

 

As we see the BlinkM module implements the StdControl.init(), 

StdControl.start(), and StdControl.stop() commands, since it 

provides the StdControl interface. It also implements the Timer.fired() 

event, which is necessary since BlinkM must implement any event from an 

interface it uses. The init() command in the implemented StdControl interface 

simply initialises the Leds subcomponent with the call to Leds.init(). The 

start() command invokes Timer.start() to create a repeat timer that 
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expires every 1000 ms. stop() terminates the timer. Each time 

Timer.fired() event is triggered, the Leds.redToggle() toggles the red 

LED. 

 

3.2.8. TinyOS MAC layer 

Wireless sensor networks impose additional challenges on Media Access Control 

(MAC) mechanisms. In both wired and wireless networks media access has been 

at the core of effective communication. Since WSNs are a new domain of wireless 

application, traditional methods (such as 802.11 or Ethernet MAC) rarely 

minimize power consumption or provide enough control to the application [Woo].  

In shared medium networks, one of the fundamental tasks of a MAC layer is to 

avoid collisions between two interfering nodes. It allocates the channel to the 

nodes efficiently, so that each node can communicate with a bounded waiting 

time and with as little overhead as possible. The important attributes for 

traditional MAC are fairness, latency, throughput and bandwidth utilization. 

In contrast, the important attributes of a MAC protocol for WASN are energy 

efficiency and scalability towards size and topology change. The major sources of 

energy wastage are [Pol03b]: 

- Collision: collision results in corruption of a packet and subsequent 

retransmission leading to increased energy consumption as well as latency. 

- Idle listening & overhearing: listening for either possible packets or packets 

destined for other nodes leads to wastage of energy. Idle listening consumes 

significant energy comparable to actually receiving a packet. 

- Control packets overhead: increased control overhead leads to increased 

energy usage in direct proportion. 

 

The mica2 series of sensor motes uses the ChipCon model CC1000 single-chip 

RF transceiver. 

Figure 3.2.8-1 shows the overall component and configuration architecture for the 

CC1000 stack. 
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Figure 3.2.8-1 

 

CC1000RadioIntM module is the data path module for the CC1000. This 

module provides transmit and receive data movement using CSMA/CA based 

contention avoidance schemes. In the receive mode , the module accepts bytes of 

data from the radio via the SPI interface and performs the necessary preamble 

detection , synchronization and CRC calculation/checks. When a packet has been 

received , it posts a task which signals a receive event. While the stack computes 

and checks the CRC , it does not drop the packet based on a bad CRC. Rather it 

sets the crc field of the TOS_Msg struct to be ‘1’ if the CRC is valid. 

To transmit the stack checks to see if the channel is clear by searching for a 

preamble AND monitoring received signal strength (via the ADC). When the 

channel is clear , it toggles the radio and pushes out the preamble , sync and 

payload bytes. The stack also implements low power listening modes and uses the 

Timer components to trigger RX and TX periods. 

CC1000ControlM is the control path module for CC1000 operation. This 

module provides all of the management functions of the radio including tuning , 
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toggling between TX/RX operation, selecting power states , and reading special 

I/O pins. It provides these features via the CC1000Control interface. While 

most of the functionality of this stack is used by the data path , it is also exported 

outside the radio stack for applications that may need to take direct control of the 

stack 

 

If we look at the entire radio stack ( see figure Figure 3.2.8-2 ) we see several 

other components: 

- SpiByteFifo: provides a byte-level abstraction to the radio. In essence , it 

uses the Serial Peripheral Interface (SPI) of the ATMega processor to shift out 

bits to the radio when sending and shift in bits from the radio when receiving 

- RandomLFSR : returns a 16 bit random number. It is used in 

CC1000RadioIntM module to determine the lenght of the backoff state in 

radio clock ticks. 

 

 
Figure 3.2.8-2 

 

The network stack is initialized by calling init() in CC1000RadioIntM. In turn , 

RandomLFSR and SpiByteFifo is initialized. RandomLFSR also initializes 

the seed from the ID of the mote for the random number generator. 

CC1000RadioIntM sets its MACdelay field to -1 and sets the radio hardware 

receiving. While the entire network stack is idle it shifts in the bit received into a 
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buffer and checks for the preamble. Preamble/start symbol will be discussed in 

further detail below. 

 

To understand the behavior of MAC layer it’s important to discuss about TinyOS 

message’s structure : 

 

typedef struct TOS_Msg 

{ 

 uint16_t addr; 

 uint8_t type; 

 uint8_t group; 

 uint8_t lenght; 

 int8_t data[TOSH_DATA_LENGTH]; 

 uint16_t crc; 

 uint16_t strength; 

 uint16_t time; 

} TOS_Msg; 

 

It consists of an unsigned two byte field addr, followed by three unsigned single 

byte fields type, group, and length addr specifies a moteID or the 

broadcast address (0xffff). When the CC1000RadioIntM receives a packet, the 

packet is passed to the AM level. If addr is neither the broadcast address nor the 

address of the mote receiving the packet, the packet is dropped. 

The group field specifies a channel for motes on a network. If a mote receives a 

packet sent by a mote with a different group field, the packet is dropped at the 

AM level. The default group is 0x7d. The type field specifies which handler to 

be called at the AM level when a packet is received. The length  field specifies 

the length of the data portion of the TOS Msg. Packets have a maximum 

payload of 29 bytes. 

The next  field in the TOS Msg struct is the data portion. It consists of an 

array of 29 bytes (as specified by TOSH DATA LENGTH). The unsigned two 

byte field crc follows. When sending, the 
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CRC is incrementally calculated as each byte of the packet is transmitted. The 

maximum length of a transmitted TOS Msg is 36 bytes (addr(2 bytes) + type(1 

bytes) + group(1 bytes) + length(1bytes) + data(29 bytes) + crc(2 bytes = 36 

bytes)).  

The strength and time fields are not transmitted; they are meta-data about the 

packet. The last two fields of TOS Msg are the unsigned two byte strength and 

unsigned two byte time fields. When the network stack  finishes sending a 

packet, it will return the TOS MsgPtr to the application that issued the send 

request. 

 

The state-machine that CC1000RadioIntM implements is shown in Figure 3.2.8-3. 

Looking at the figure we can discuss the various states: 

- disabled state: it’s the initial state resulting of init() call. However after 

start() call we can switch to power down state. 

- power down state : it’s the state in which radio is off and processor is a low 

power consumption mode 

- idle state : in this state radio is on and it’s possible to begin a transmission or a 

reception. If timer fires because of  MacDelay=0 and there is something to 

transmit we switch to pretx_state. However if a preamble is detected ( thus 17 

special bytes ) we switch to sync_state to receive synchronization byte. 

- pretx_state: in this state we make an RSSI measure to monitor the channel. If 

channel is idle we switch to tx_state ( in the sub state tx_s_preamble ) for 

beginning transmission. Otherwise we return to idle_state. 

- sync_state: in this state we expect synchronization byte. If received we go in 

rx_state else turn back to idle state. 

- tx_state: this state is composed by six sub states for preamble, synchronization 

byte, data, crc and flush transmission. In particular flush transmission acts as 

ending sequence. When it’s achieved tx_s_done state radio is put in receiving 

mode ,it is posted the task PacketSent() and we switched again to 

idle_state. 

- rx_state: in this state we receive data byes checking the CRC. When finished 

it’s posted the task PacketReceived() and we turn back to idle_state.  
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Figure 3.2.8-3 



Alessio Falchi                                     Chapter 3 – The Berkeley motes environment 

 50

 

The noise floor on a wireless channel is estimated by examining the 

characteristics of the channel from the received signal strength indicator (RSSI). 

The noise floor is typically centered around a mean with some standard deviation. 

Noise floor estimation is further complicated by errors in the receiver packet 

detection. Noise floor estimation must be resilient to outliers and noisy signals. 

RSSI output of the CC1000 offers a voltage which is inversely proportional to the 

sensed level of RSSI in the channel ; for this reason if RSSI measure is major than 

a threshold channel is considered idle ( see Figure 3.2.8-4) 

 
Figure 3.2.8-4 

 

Of primary concern in achieving high channel utilization in CSMA schemes is the 

initial and congestion backoff algorithm. The initial backoff is the time a 

transmitter delays from the point that a packet is submitted for transmission to the 

first time status of channel is evaluated. The congestion backoff is the time a 

transmitter delays after checking the status of a channel and determining that the 

channel is busy. The initial backoff affects the maximum load that each node may 

offer to the channel. Longer initial backoffs result in less throughput per node and 

more nodes to saturate the channel. Long initial backoffs prevent against collision 
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when responding to synchronized transmissions (such as broadcast messages). 

Conventional schemes including Ethernet use and exponentially increasing 

congestion backoff but in wireless sensor networks primary concern is power 

consumption and secondary one is channel fairness. For example, bulk data 

transfers may not want any initial backoff, responses to broadcast messages 

requires a random backoff. 

 

Now we consider in detail the backoff time compute. Backoff algorithm is very 

simple: 

 

Initial backoff = MSG_DATA_SIZE+ randint(0,127) 

Congestion backoff = MSG_DATA_SIZE * (randint(0,15)+1) 

 

where raindint(x,y) is a function that computes a random integer between x 

and y 

 

Since maximum message data size ( MSG_DATA_SIZE ) is 36 bytes and effective 

radio rata rate is 19.2 kbps we have : 

 

initial backoff = rand(15ms,68.3ms) 

congestion backoff = rand(12.08ms,193.3ms)  

 

where rand(x,y) is a function that computes a random real number between x 

and y. 

So MAC algorithm for a packet transmission is: 

 

Schedule initial backoff = rand(15ms,68.3ms) 

If sMacDelay=0 

If !receivedpreamble & RSSI > threshold =>transmit 

Else schedule congestion backoff =rand(12.08ms,193.3ms) 

 


