
Alessio Falchi Chapter 3 – The Berkeley motes environment

 17

3. The Berkeley motes environment

3.1. Hardware

3.1.1. Overview

Researches at UC Berkeley have developed small sensor devices , called motes

[Cro1] ,and an operating system that is especially suited to running on them ,

called TinyOS [Cro3, Cro4].

In detail there are two kind of motes developed: Mica2 (see Figure 3.1.1-1) and

Mica2dot (see Figure 3.1.1-2) ; they are quite similar functionality but they

deeply differ in form-factor .

Figure 3.1.1-1

Figure 3.1.1-2

Mica2 and Mica2dot motes both have a 4Mhz , 8bit Atmel microprocessor. Their

RFM ChipCon radios run at 19.2 Kbits/second over a single shared CSMA/CA

(carrier-sense multiple access collision avoidance) channel. Like all wireless radio

ChipCon radio is half-duplex, which means that they cannot detect collisions

Alessio Falchi Chapter 3 – The Berkeley motes environment

 18

because they cannot listen to their own traffic. Instead, they try to avoid collisions

by listening to the channel before transmitting and backing off for a random time

period when it is in use (for more detail see MAC layer in 3.2).

Motes have an external 32kHz clock that the TinyOS operating system can

synchronize with neighboring motes to approximately +/- 1 ms to ensure that

neighbors are powered up and listening when there is information to be exchanged

between them.

Both generation of Mica motes (mica2 and mica2dot) are equipped with 512KB

of non-volatile flash memory that can be used for logging and data collection.

Motes hardware has a 51-pin connector that allows expansion boards to be added.

Typically a sensor board is placed in the connector which adds a suite of sensors

to the device.

Table 3.1.1-1 summarizes hardware characteristics of Mica2 and Mica2dot nodes:

Table 3.1.1-1

In the motes, the AVR interfaces with four hardware blocks (Radio, LEDS, Flash

Alessio Falchi Chapter 3 – The Berkeley motes environment

 19

Memory and Sensor board / Programming interface). The general hardware

organization is presented in Figure 3.1.1-3:

Figure 3.1.1-3

3.1.2. Processor

The microcontroller unit (MCU) is responsible for control of the sensors and the

execution of communication protocols and signal processing algorithms on the

gathered sensor data.

MCU supports various operating. Central unit of a sensor node is a low-power

microcontroller that controls all functional parts of the node. Software for such a

microcontroller has to be resource-aware on the one hand. On the other hand,

several Quality-of-Service (QoS) aspects have to be met by sensor node software,

such as latency, processing time for data fusion or compression, or flexibility

regarding routing algorithms or MAC techniques.

Conventional software development for microcontrollers usually covers hardware

abstraction layer, operating system and protocols and application layer. Often

software for microcontrollers is limited to an application specific monolithic

Alessio Falchi Chapter 3 – The Berkeley motes environment

 20

software block optimized for performance and resource usage. Microcontrollers

are often developed and programmed for a specific, well-defined task. This

limitation of the application domain leads to high performance embedded systems

even with strict resource constraints. Accordingly if the application domain of an

embedded system changes often the whole microcontroller is replaced instead of

writing and downloading a new program.

For sensor nodes, application specific microcontrollers are preferred instead of

general purpose microprocessors. This is because of the small size and the low

energy consumption of those controllers. However, requirements concerning a

sensor node exceed the main characteristics of a conventional microcontroller and

its software. The main reason for this is the dynamic character of a sensor node’s

task. Sensor nodes can adopt different tasks such as data acquisition, data

forwarding, or information processing.

The processor within the Mica2 is an Atmel Atmega128 AVR. AVR is an 8-Bit

Harvard architecture, with separate instruction and data memory.

AVR micro controllers provide several sleep modes. The purpose of these modes

is to provide a way of suspending program execution when necessary, thereby

reducing power consumption.

3.1.3. Leds

Three Programmable LEDs are connected to the AVR in the Mica2 motes. These

may be used for status and output of digital values.

3.1.4. Flash Memory

In order to allow permanent storage and data logging in the motes, a 512KB Serial

Flash memory chip is attached to one of the AVR's UART ports. If installed in

conjunction with a simple co-processor, this secondary memory could be also

used for over-the-air reprogramming of the main microcontroller.

Alessio Falchi Chapter 3 – The Berkeley motes environment

 21

3.1.5. Radio

Typical communication distances for low power wireless radios such as those

used in mica2 and mica2dot motes range from a few meters to around hundred

meters depending on transmission power and environmental conditions. Such

short ranges mean that almost all real sensor network deployments must make use

of multi-hop communication where intermediate nodes relay information for their

peers.

In the case of mica2 and mica2dot the radio uses a Manchester encoding

providing a delivered bandwidth of 19.2 kbps.

Manchester encoding is used to avoid synchronization errors which commonly

occur in demodulation phase-locked-loop circuits when long sequences of 1’s or

0’s are received.

The sensor node’s radio enables wireless communication with neighboring nodes

and the outside world.

The Mica2 and Mica2dot use a low-power, single-chip UHF transceiver from

Chipcom as its radio component. The CC1000 is designed for very low power and

very low voltage wireless applications. The circuit is mainly intended for the ISM

(Industrial, Scientific and Medical) and SRD (Short Range Device) frequency

bands at 315, 433, 868 and 915 MHz, but can easily be programmed for operation

at other frequencies in the 300- 1000 MHz range. The main operating parameters

of CC1000 can be programmed via a serial bus, thus making CC1000 a very easy

to use transceiver. CC1000 is configured via a simple 3-wire interface. There are

36 8-bit configuration registers, each addressed by a 7-bit address. A Read/Write

bit initiates a read or write operation.

A full configuration of CC1000 requires sending 29 data frames of 16 bits each (7

address bits, R/W bit and 8 data bits). All registers are also readable. Data is

transferred to and from the AVR microcontroller via a dedicated SPI (Serial

Peripheral Interface) Bus, and the Radio generates one interrupt every 8 bits when

in receive mode.

In general radio can operate in four distinct modes of operation: Transmit ,

Receive , Idle , Sleep (Off). So it is very important to completely shut down the

Alessio Falchi Chapter 3 – The Berkeley motes environment

 22

radio rather than transitioning to Idle mode when it is not transmitting or receiving

data.

So features of mica2 radio include:

- Frequency selectable from 300-1000 Mhz;

- FSK modulation with data rates up to 19.2 Kbps;

- Hardware based Manchester encoding;

- Integrated bit synchronizer;

- -110 dBm sensitivity;

- selectable power states;

- digital control interface using special function register;

The radio module as default setting makes the following operational state after

being issued StdControl.init() and StdControl.start():

- set default frequency channel;

- set 19.2 kbps data rate;

- set high sensitivity mode (longest settling time);

- set 0 dBm transmit power;

- turn on radio in receiving mode;

The CC1000 uses a digital frequency synthesizer to select a particular

send/receive channel. Specific control registers are programmed with values

according to the channel and FSK separation used. Because of the nature of the

synthesizer it is only capable of reproducing discrete frequencies in the operating

range of the device.

The TinyOS stack and related tools take the guesswork out of tuning the CC1000

for the mica2 series motes. The stack will automatically compute the nearest

channel for a given frequency and program the necessary register values (manual

tuning) or use pre-determined values from a preset table (preset tuning).

The control path function CC1000Control.TuneManual() takes a desired

frequency in Hz , computes the optimal achievable frequency , determines the

necessary control register values , programs the CC1000 and calibrates the device.

It returns the frequency, in Hz, of the actual channel. Defining the compiler flag

Alessio Falchi Chapter 3 – The Berkeley motes environment

 23

CC1K_DEF_FREQ=x sets the default frequency for the device when compiling

the application. Using manual tuning does not affect the modem control registers (

default data rate is 38.4 Kbaud/19.2 Kbps).

The control path function CC1000Control.TunePreset() takes a given

index in this table, sets the register values and calibrates the device.

The data path provides a method of altering the duty cycle state of the radio to

meet power constraints to set and determine the present duty cycle mode for both

the receiving and transmitting side of the data path.

3.1.6. Sensing Hardware

Sensor transducers translate physical phenomena to electrical signals and can be

classified as either analog or digital devices depending on the type of output they

produce.

There are several sources of power consumption in a sensor , including:

- signal sampling and conversion of physical signals to electrical ones

- signal conditioning

- analog-to-digital conversion

While the modular design of the motes allows a wide range of analog and digital

sensors to be attached to the Sensor Node, the reference sensor board for the mica

platform is the “Mica Sensorboard " (see Figure 3.1.6-1).

Figure 3.1.6-1

Alessio Falchi Chapter 3 – The Berkeley motes environment

 24

A variety of sensors have been interfaced with the motes [Cro2] ; a partial list

includes sensors for light , surface and ambient temperature , acceleration ,

magnetic field , voltage , current (DC and AC) , sound volume , ultrasound

(Figure 3.1.6-2), barometric pressure (Figure 3.1.6-3) , humidity , and solar

radiation.

Figure 3.1.6-2

In addition to the above sensors, the board is capable of generating acoustic

output, using its 4 kHz single tone buzzer. Optional hardware support to detect the

generated tone on a receiving node is provided by an active bandpass filter and a

LMC567 tone decoder from National Semiconductor, which has built in phase

lock loop and adjustable threshold detection.

Figure 3.1.6-3

Alessio Falchi Chapter 3 – The Berkeley motes environment

 25

All modules in the sensor board can be power cycled independently, and are

power isolated from the Mica's processor through an analog switch.

It is very important the cost of energy required to fetch samples from sensors.

The variations among sensors are dramatic, both in terms of power usage and time

to obtain a sample. Some devices, such as pressure and humidity sensors , require

as long as a second to capture a reading , which means that the per-sample energy

costs are very high.

Other devices, such as the passive thermistor, whose resistance varies with

ambient temperature , require only a few microseconds to sample , and thus

contribute only a negligible amount to the total energy consumption of the motes.

There are a variety of sensor boards available. The sensor boards allow for a range

of different sensing modalities as well as interface to external sensor via

prototyping areas or screw terminals. The following Table 3.1.6-1 lists the

currently available sensor boards for each mote family.

Table 3.1.6-1

In the measurements we refer there were used Crossbow sensor board

MTS310CA for mica2 motes that includes the following sensing modalities:

- microphone

The microphone circuit has two principal uses. The first use is for acoustic

ranging. The second use is for general acoustic recording and measurement. A

novel application of the sounder and tone detector is acoustic ranging. In this

application, a mote pulses the sounder and sends an RF packet via radio at the

Alessio Falchi Chapter 3 – The Berkeley motes environment

 26

same time. A second mote listens for the RF packet and notes the time of arrival

by resetting a timer/counter on its processor. It then increments a counter until the

tone detector detects the sounder. The counter value is the Time-of-Flight of the

sound wave between the two motes. The Time-of-Flight value can be converted

into an approximate distance between motes. Using groups of Motes with

Sounders and Microphones, a crude localization and positioning system can be

built

- sounder: the sounder is a simple 4 kHz fixed frequency piezoelectric

resonator.

- light and temperature

- 2-Axis accelerometer : The sensor can be used for tilt detection, movement,

vibration, and/or seismic measurement

- 2-Axis Magnetometer: magnetometer can measure the Earth’s field and other

small magnetic fields. A useful application is vehicle detection. Successful test

have detected disturbances from automobiles at a radius of 4,57 meters.

Alessio Falchi Chapter 3 – The Berkeley motes environment

 27

3.2. Software

3.2.1. Traditional OS Architectures

In traditional OS architectures we have Large memory & storage requirement ,

unnecessary and overkill functionality (address space isolation, complex I/O

subsystem) , relative high system overhead (e.g, context switch) and these

architectures require complex and power consuming hardware support.

Architecture must be:

- extremely small footprint;

- extremely low system overhead;

- extremely low system overhead;

So we don’t have kernel but direct hardware manipulation , no process

management but only one process on the fly , no virtual memory but single linear

physical address space , no dynamic memory allocation bit memory assigned at

compile time , no software signal or exception but function call instead

3.2.2. Introduction to TinyOS

TinyOS is a component-based operating system for sensor networks developed at

UC Berkeley [Cro3]. TinyOS can be seen as an advanced software framework

which has a large user community due to its open source character . The

framework contains numerous pre-built sensor applications and algorithms for

example multi-hop ad-hoc routing and supports different sensor node platforms.

Programmers experienced with the C programming language can easily develop

TinyOS applications written in a proprietary language called NesC

The design of TinyOS is based on the specific sensor network characteristics:

small physical size, low-power consumption, concurrency-intensive operation,

multiple flows, limited physical parallelism and controller hierarchy, diversity in

design and usage, and robust operation to facilitate the development of reliable

distributed applications. The main intention of the TinyOS developers was

“retaining energy, computational and storage constraints of sensor nodes by

managing the hardware capabilities effectively, while supporting concurrency-

intensive operation in a manner that achieves efficient modularity and

Alessio Falchi Chapter 3 – The Berkeley motes environment

 28

robustness”. Therefore, TinyOS is optimized in terms of memory usage and

energy efficiency. It provides defined interfaces between the components which

reside in neighboring layers. A layered model is shown in Figure 3.2.2-1:

Figure 3.2.2-1

.

TinyOS utilizes an event model instead of a stack-based threaded approach, which

would require more stack space and multi-tasking support for context switching,

to handle high levels of concurrency in a very small amount of memory space.

Event based approaches are the favorite solution to achieve high performance in

concurrency intensive applications. Additionally, the event-based-approach uses

CPU resources more efficiently and therefore takes care of the most precious

resource, the energy. An event is serviced by an event handler. More complex

event handling can be done by a task. The event handler is responsible for posting

the task to the task scheduler. Event and task scheduling is performed by a two-

level scheduling structure. This kind of scheduling provides that events,

associated with a small amount of processing, can be performed immediately,

while longer running tasks can be interrupted by events. Tasks are handled

rapidly, however no blocking or polling is permitted.

Alessio Falchi Chapter 3 – The Berkeley motes environment

 29

3.2.3. TinyOS design

In order to achieve the necessary levels of concurrency, TinyOS uses a state

machine based programming model as opposed to a thread based programming

model. By making each component or service a state machine, we are able to

make very efficient use of CPU and memory resources. Instead of having to

allocate multiple stacks for each running application or service, we are able to

share a single execution context amongst multiple sate machines. Each

component uses events and commands to quickly transition from state to state.

Logically, these state transitions are thought of a instantaneous, requiring very

few CPU operations. Each component is temporarily allocated the execution

context for the duration of these state changes. It has been added to this model the

notion of tasks, which allow components to request the CPU execution context in

order to perform long-running computations. These tasks get scheduled at a later

date and run to completion. While they execute atomically with respect to other

tasks, they can be periodically interrupted by higher priority events. Currently it

is used a simple FIFO queue for scheduling, however an alternative scheduling

mechanism could be easily added.

A secondary advantage of choosing to structure this programming model after

finite state machines is that it propagates the hardware abstractions into software.

Just as hardware bases state machine responds to changes on its I/O pins, our

components respond to events and commands on their interfaces.

TinyOS consists of the tiny scheduler and a graph of components (Figure 3.2.3-1).

Components satisfy the demand for modular software architectures. Every

component consists of four interrelated parts: a command handler, an event

handler, an encapsulated fixed-size and statically allocated frame, and a bundle of

simple tasks. The frame represents the internal state of the component. Tasks,

commands and handlers execute in the context of the frame and operate on its

state. In addition, the component declares the commands it uses and the events it

signals. Through this declaration, modular component graphs can be composed.

The composition process creates layers of components. Higher layer components

issue commands to lower level components and these signal events to higher level

components. To provide an abstract definition of the interaction of two

Alessio Falchi Chapter 3 – The Berkeley motes environment

 30

components via commands and events, the bi-directional interface is introduced in

TinyOS

Figure 3.2.3-1

Commands are non-blocking requests made to lower layer components. A

command provides feedback to its caller by returning status information.

Typically, the command handler puts the command parameters into the frame and

posts a task into the task queue for execution. The acknowledgment whether the

command was successful, can be signaled by an event.

Commands deposit request parameters into the frame , are non-blocking , need to

return status so postpone time consuming work by posting a task and can call

lower level commando.

Event handlers are invoked by events of lower layer components, or when directly

connected to the hardware, by interrupts. Similar to commands, the frame will be

modified and tasks are posted. Both, commands and tasks, perform a small fixed

amount of work similar to interrupt service routines.

Events can call commands, signal events, post tasks, can not be signaled by

commands; events preempt tasks, not vice-versa , interrupt trigger the lowest level

events and deposit the information into the frame.

Alessio Falchi Chapter 3 – The Berkeley motes environment

 31

Tasks perform the primary work. They are atomic, run to completion, and can

only be preempted by events. Tasks are queued in a FIFO task scheduler to

perform an immediate return of event or command handling routines. Due to the

FIFO scheduling, tasks are executed sequentially and should be short.

Alternatively to the FIFO task scheduler, priority-based or deadline-based

schedulers can be implemented into the TinyOS framework.

Tasks perform computationally intensive work and handle multiple data flows

Figure 3.2.3-2

Alessio Falchi Chapter 3 – The Berkeley motes environment

 32

3.2.4. Communication

Communication stack in TinyOS is shown in Figure 3.2.4-1:

Figure 3.2.4-1

In details we take a look at each level:

- RFM

At this level we can set Operation Mode (transmitting or receiving) , set sampling

rate , receive one bit , transmit one Bit , notify TX/RX is finished and shut down

RFM.

- Radio Byte

This level is responsible of bit encoding (Manchester), error detection and

correction, signal strength and to detect whether current channel is free to

transmit, otherwise wait for random of clock ticks.

Alessio Falchi Chapter 3 – The Berkeley motes environment

 33

- Radio Packet

At this level there is 16-bit CRC check (drops packet if fails) and redundancy

transmit.

- Messaging

The activities are packaging (dividing , combining) , routing , and support for

special addresses (broadcast or UART interface)

- AM dispatcher

It’s one byte message type used to direct packet to handlers. This layer follows a

typical implementation:

if(msg.type == 0) val = Handler0(data);

if(msg.type == 1) val = Handler1(data);

….

if(msg.type == 255) val = Handler255(data);

User can redefine handler names (e.g. #define Handler5 NULL_FUNC)

- Application

At this level we have content-based routing, consensus algorithm, location

service, tracking and sensor data processing.

A simple profiling if we want to send 60 data bytes , we need to invoke (Figure

3.2.4-2) :

- messaging layer 1 times;

- packet layer > 2 times;

- byte layer > 60 times ;

- RFM > 480 times;

Alessio Falchi Chapter 3 – The Berkeley motes environment

 34

Figure 3.2.4-2

3.2.5. Active Message

In TinyOS legacy legacy communication (TCP/IP, sockets, routing protocols like

OSPF) can’t be used because traditional communications uses intensive

bandwidth and are centered on “stop and wait” semantics.

In fact with socket/TCP/IP too much memory is used for buffering and threads ;

furthermore data are buffered in network stack until application threads read it and

application threads blocked until data is available.

With WSNs there it the need of real time constraints and low processing

overhead.

Active message is a layer responsible of :

 Integrating communication and computation

 Matching communication primitives to hardware capabilities

 Provides a distributed event model where networked nodes send events to

each other

 Closely fits the event-based model of TinyOS

Message contains a user-level handler to be invoked on arrival and data payload

passed as argument. Message handlers are executed quickly to prevent network

congestion and provide adequate performance. Event-centric nature enables

network communication to overlap with sensor-interaction.

Active Message and TinyOS form “Tiny Active Messages” that support three

basic primitives : best effort message transmission , addressing and dispatch.

Alessio Falchi Chapter 3 – The Berkeley motes environment

 35

With Active Message every message contains the name of an event handler ; the

sender declares buffer storage in a frame , names a handler , requests transmission

and does completion signal. On the other side receiver’s event handler is fired

automatically in a target node.

So there is no blocked or waiting threads on the receiver and we have a single

buffering.

A typical send message code could be:

char TOS_COMMAND(INT_TO_RFM_OUTPUT)(int val){

 int_to_led_msg* message =

(int_to_led_msg*)VAR(msg).data;

 if (!VAR(pending)) {

 message->val = val;

 if

(TOS_COMMAND(INT_TO_RFM_SUB_SEND_MSG)(TOS_MSG_BCAST,

 AM_MSG(INT_READING), &VAR(msg))) {

 VAR(pending) = 1;

 return 1;

 }

 }

 return 0;

}

Initially there is application access to message buffer (VAR(msg.data)

through a cast to a defined format (int_to_led_msg*). Then there is a check

(if (!VAR(pending))) , it’s build the message and request transmission

through a destination identifier (TOS_MSG_BCAST) and a handler identifier

(AM_MSG(INT_READING)). After that the state is marked busy

(VAR(pending)=1)

Alessio Falchi Chapter 3 – The Berkeley motes environment

 36

3.2.6. NesC

The basic concepts behind nesC are:

• Separation of construction and composition: programs are built out of

components, which are assembled (“wired”) to form whole programs.

Components define two scopes, one for their specification (containing the names

of their interface instances) and one for their implementation.

Components have internal concurrency in the form of tasks. Threads of control

may pass into a component through its interfaces. These threads are rooted either

in a task or a hardware interrupt.

• Specification of component behavior in terms of set of interfaces. Interfaces may

be provided or used by the component. The provided interfaces are intended to

represent the functionality that the component provides to its user, the used

interfaces represent the functionality the component needs to perform its job.

• Interfaces are bi-directional: they specify a set of functions to be implemented

by the interface’s provider (commands) and a set to be implemented by the

interface’s user (events). This allows a single interface to represent a complex

interaction between components (e.g., registration of interest in some event,

followed by a callback when that event happens). This is critical because all

lengthy commands in TinyOS (e.g. send packet) are non-blocking; their

completion is signaled through an event (send done). By specifying interfaces, a

component cannot call the send command unless it provides an implementation of

the sendDone event. Typically commands call downwards, i.e., from application

components to those closer to the hardware, while events call upwards. Certain

primitive events are bound to hardware interrupts.

• Components are statically linked to each other via their interfaces. nesC is

designed under the expectation that code will be generated by whole-program

compilers. This allows for better code generation and analysis. An example of this

is nesC’s compile-time data race detector.

• The concurrency model of nesC is based on run-to-completion tasks, and

interrupt handlers which may interrupt tasks and each other. The nesC compiler

signals the potential data races caused by the interrupt handlers.

Alessio Falchi Chapter 3 – The Berkeley motes environment

 37

As it was said the nesC model is formed by interfaces and components.

An interface could be used or can be provided ; components are modules or

configurations.

An application is a graph of components (Figure 3.2.6-1).

Figure 3.2.6-1

Interfaces are used for grouping functionality like split-phase operation (send ,

sendDone) or standard control interface (init , start , stop). They describe bi-

directional interaction ; interface provider must implement commands while

interface user must implement events.

For instance the interface clock.nc can contains:

interface Clock {

 command result_t setRate (char interval, char

scale);

 event result_t fired ();

}

Alessio Falchi Chapter 3 – The Berkeley motes environment

 38

Modules implement a component’s specification with C code . An example is the

following Mycomp module:

module MyComp {

 provides interface X;

 provides interface Y;

 uses interface Z;

}

implementation {

…// C code

}

Configurations implements a component by wiring together multiple components.

Wiring means connect interfaces, commands, events together :

configuration MyComp {

 provides interface X;

 provides interface Y;

 uses interface Z;

}

implementation {

…// wiring code

}

Obviously connected elements must be compatible (interface-interface, command-

command, event-event)

Alessio Falchi Chapter 3 – The Berkeley motes environment

 39

3.2.7. TinyOS application

In Figure 3.2.7-1 there is a representation of a complete application. The lowest

layer of components directly correspond to the hardware of the system. They

simply map the physical hardware into our software based component model.

The user application sits at the top of the hierarchy issuing commands down into

the lower level components and responding to events propagating up from the

system components. During execution, all events are directly or indirectly

triggered from the propagation of hardware events up through the component

graph. This comes directly from the state machine based programming model,

where state changes are the result of changes on the input pins.

Figure 3.2.7-1

Now let’s look at “Blink” application ; this application simply causes the red LED

on the mote to turn on and off at 1 Hz.

Blink consists of two components: a module, called BlinkM.nc, and a

configuration, called Blink.nc. All applications require a single top-level

configuration, which is typically named after the application itself. In this case

Blink.nc is the configuration for the Blink application and the source file that

Alessio Falchi Chapter 3 – The Berkeley motes environment

 40

the NesC compiler uses to generate the executable for the mote. BlinkM.nc, on

he other hand, actually provides the implementation of the Blink application.

Blink.nc is used to wire the BlinkM.nc module to other components that the

Blink application requires. The reason for the distinction between modules and

configurations is to allow a system designer to quickly “snap together”

applications. For example, a designer could provide a configuration that simply

wires together one or more modules, none of which she actually designed.

Likewise, another developer can provide a new set of “library” modules that can

be used in a range of applications.

The nesC compiler, ncc, compiles a nesC application when given the file

containing the top-level configuration. Typical TinyOS applications come with a

standard Makefile that allows platform selection and invokes ncc with appropriate

options on the application's top-level configuration.

Let's look first at the module Blink.nc:

configuration Blink {

implementation {

components Main, BlinkM, SingleTimer, LedsC;

Main.StdControl -> BlinkM.StdControl;

Main.StdControl -> SingleTimer.StdControl;

BlinkM.Timer -> SingleTimer.Timer;

BlinkM.Leds -> LedsC;

}

}

The first two lines,

configuration Blink {

}

simply state that this is a configuration called Blink. Within the empty braces here

it is possible to specify uses and provides clauses, as with a module.

Alessio Falchi Chapter 3 – The Berkeley motes environment

 41

The actual configuration is implemented within the pair of curly bracket following

key word implementation. The components line specifies the set of components

that this configuration references, in this case Main, BlinkM, SingleTimer,

and LedsC. The remainder of the implementation consists of connecting

interfaces used by components to interfaces provided

by others.

Main is a component that is executed first in a TinyOS application. To be precise,

the Main.StdControl.init() command is the first command executed in

TinyOS followed by Main.StdControl.start(). Therefore, a TinyOS

application must have Main component in its configuration. StdControl is a

common interface used to initialise and start TinyOS

components.

The following two lines in Blink configuration:

Main.StdControl -> SingleTimer.StdControl;

Main.StdControl -> BlinkM.StdControl;

wire the StdControl interface in Main to the StdControl interface in both

BlinkM and SingleTimer.StdControl.init() and

BlinkM.StdControl.init() will be called by

Main.StdControl.init(). The same rule applies to the start() and

stop() commands.

The BlinkM module uses the interface Leds, so Leds.init() is called

explicitly in BlinkM.init().

nesC uses arrows to determine relationships between interfaces.

The line BlinkM.Timer -> SingleTimer.Timer is used to wire the

Timer interface used by BlinkM to the Timer interface provided by

SingleTimer. BlinkM.Timer on the left side of the arrow is referring to the

interface called Timer (/tos/interfaces/Timer.nc), whereas

SingleTimer.Timer on the right side of the arrow is refering to the

implementation of Timer (/tos/lib/SingleTimer.nc).

Now let's look at the module BlinkM.nc:

Alessio Falchi Chapter 3 – The Berkeley motes environment

 42

module BlinkM {

provides {

interface StdControl;

}

uses {

interface Timer;

interface Leds;

}

}

Figure 3.2.7-2

The first part of the code states that this is a module called BlinkM and declares

the interfaces it povides and uses. The BlinkM module provides the interface

StdControl. This means that BlinkM implements the StdControl

interface. The BlinkM module also uses two interfaces: Leds and Timer. This

means that BlinkM may call any command declared in the interfaces it uses and

must also implement any events declared in those interfaces. The Leds interface

defines several commands like redOn(), redOff(), and so forth, which turn

the different LEDs (red, green, or yellow) on the mote on and off.

Because BlinkM uses the Leds interface, it can invoke any of these commands.

However Leds is just an interface: the implementation is specified in the

Alessio Falchi Chapter 3 – The Berkeley motes environment

 43

Blink.nc configuration file. An event is a function that the implementation of

an interface will signal when a certain event takes place. In this case, the

fired() event is signaled when the specified interval has passed. This is an

example of a bi - directional interface: an interface not only provides commands

that can be called by users of the interface, but also signals events that call

handlers in the user. A module that uses an interface must implement the events

that this interface uses.

Let's look at the rest of BlinkM.nc to see how this all fits together:

implementation {

command result_t StdControl.init() {

call Leds.init();

return SUCCESS;

}

command result_t StdControl.start() {

return call Timer.start(TIMER_REPEAT, 1000) ;

}

command result_t StdControl.stop() {

return call Timer.stop();

}

event result_t Timer.fired(){

call Leds.redToggle();

return SUCCESS;

}

}

As we see the BlinkM module implements the StdControl.init(),

StdControl.start(), and StdControl.stop() commands, since it

provides the StdControl interface. It also implements the Timer.fired()

event, which is necessary since BlinkM must implement any event from an

interface it uses. The init() command in the implemented StdControl interface

simply initialises the Leds subcomponent with the call to Leds.init(). The

start() command invokes Timer.start() to create a repeat timer that

Alessio Falchi Chapter 3 – The Berkeley motes environment

 44

expires every 1000 ms. stop() terminates the timer. Each time

Timer.fired() event is triggered, the Leds.redToggle() toggles the red

LED.

3.2.8. TinyOS MAC layer

Wireless sensor networks impose additional challenges on Media Access Control

(MAC) mechanisms. In both wired and wireless networks media access has been

at the core of effective communication. Since WSNs are a new domain of wireless

application, traditional methods (such as 802.11 or Ethernet MAC) rarely

minimize power consumption or provide enough control to the application [Woo].

In shared medium networks, one of the fundamental tasks of a MAC layer is to

avoid collisions between two interfering nodes. It allocates the channel to the

nodes efficiently, so that each node can communicate with a bounded waiting

time and with as little overhead as possible. The important attributes for

traditional MAC are fairness, latency, throughput and bandwidth utilization.

In contrast, the important attributes of a MAC protocol for WASN are energy

efficiency and scalability towards size and topology change. The major sources of

energy wastage are [Pol03b]:

- Collision: collision results in corruption of a packet and subsequent

retransmission leading to increased energy consumption as well as latency.

- Idle listening & overhearing: listening for either possible packets or packets

destined for other nodes leads to wastage of energy. Idle listening consumes

significant energy comparable to actually receiving a packet.

- Control packets overhead: increased control overhead leads to increased

energy usage in direct proportion.

The mica2 series of sensor motes uses the ChipCon model CC1000 single-chip

RF transceiver.

Figure 3.2.8-1 shows the overall component and configuration architecture for the

CC1000 stack.

Alessio Falchi Chapter 3 – The Berkeley motes environment

 45

Figure 3.2.8-1

CC1000RadioIntM module is the data path module for the CC1000. This

module provides transmit and receive data movement using CSMA/CA based

contention avoidance schemes. In the receive mode , the module accepts bytes of

data from the radio via the SPI interface and performs the necessary preamble

detection , synchronization and CRC calculation/checks. When a packet has been

received , it posts a task which signals a receive event. While the stack computes

and checks the CRC , it does not drop the packet based on a bad CRC. Rather it

sets the crc field of the TOS_Msg struct to be ‘1’ if the CRC is valid.

To transmit the stack checks to see if the channel is clear by searching for a

preamble AND monitoring received signal strength (via the ADC). When the

channel is clear , it toggles the radio and pushes out the preamble , sync and

payload bytes. The stack also implements low power listening modes and uses the

Timer components to trigger RX and TX periods.

CC1000ControlM is the control path module for CC1000 operation. This

module provides all of the management functions of the radio including tuning ,

Alessio Falchi Chapter 3 – The Berkeley motes environment

 46

toggling between TX/RX operation, selecting power states , and reading special

I/O pins. It provides these features via the CC1000Control interface. While

most of the functionality of this stack is used by the data path , it is also exported

outside the radio stack for applications that may need to take direct control of the

stack

If we look at the entire radio stack (see figure Figure 3.2.8-2) we see several

other components:

- SpiByteFifo: provides a byte-level abstraction to the radio. In essence , it

uses the Serial Peripheral Interface (SPI) of the ATMega processor to shift out

bits to the radio when sending and shift in bits from the radio when receiving

- RandomLFSR : returns a 16 bit random number. It is used in

CC1000RadioIntM module to determine the lenght of the backoff state in

radio clock ticks.

Figure 3.2.8-2

The network stack is initialized by calling init() in CC1000RadioIntM. In turn ,

RandomLFSR and SpiByteFifo is initialized. RandomLFSR also initializes

the seed from the ID of the mote for the random number generator.

CC1000RadioIntM sets its MACdelay field to -1 and sets the radio hardware

receiving. While the entire network stack is idle it shifts in the bit received into a

Alessio Falchi Chapter 3 – The Berkeley motes environment

 47

buffer and checks for the preamble. Preamble/start symbol will be discussed in

further detail below.

To understand the behavior of MAC layer it’s important to discuss about TinyOS

message’s structure :

typedef struct TOS_Msg

{

 uint16_t addr;

 uint8_t type;

 uint8_t group;

 uint8_t lenght;

 int8_t data[TOSH_DATA_LENGTH];

 uint16_t crc;

 uint16_t strength;

 uint16_t time;

} TOS_Msg;

It consists of an unsigned two byte field addr, followed by three unsigned single

byte fields type, group, and length addr specifies a moteID or the

broadcast address (0xffff). When the CC1000RadioIntM receives a packet, the

packet is passed to the AM level. If addr is neither the broadcast address nor the

address of the mote receiving the packet, the packet is dropped.

The group field specifies a channel for motes on a network. If a mote receives a

packet sent by a mote with a different group field, the packet is dropped at the

AM level. The default group is 0x7d. The type field specifies which handler to

be called at the AM level when a packet is received. The length field specifies

the length of the data portion of the TOS Msg. Packets have a maximum

payload of 29 bytes.

The next field in the TOS Msg struct is the data portion. It consists of an

array of 29 bytes (as specified by TOSH DATA LENGTH). The unsigned two

byte field crc follows. When sending, the

Alessio Falchi Chapter 3 – The Berkeley motes environment

 48

CRC is incrementally calculated as each byte of the packet is transmitted. The

maximum length of a transmitted TOS Msg is 36 bytes (addr(2 bytes) + type(1

bytes) + group(1 bytes) + length(1bytes) + data(29 bytes) + crc(2 bytes = 36

bytes)).

The strength and time fields are not transmitted; they are meta-data about the

packet. The last two fields of TOS Msg are the unsigned two byte strength and

unsigned two byte time fields. When the network stack finishes sending a

packet, it will return the TOS MsgPtr to the application that issued the send

request.

The state-machine that CC1000RadioIntM implements is shown in Figure 3.2.8-3.

Looking at the figure we can discuss the various states:

- disabled state: it’s the initial state resulting of init() call. However after

start() call we can switch to power down state.

- power down state : it’s the state in which radio is off and processor is a low

power consumption mode

- idle state : in this state radio is on and it’s possible to begin a transmission or a

reception. If timer fires because of MacDelay=0 and there is something to

transmit we switch to pretx_state. However if a preamble is detected (thus 17

special bytes) we switch to sync_state to receive synchronization byte.

- pretx_state: in this state we make an RSSI measure to monitor the channel. If

channel is idle we switch to tx_state (in the sub state tx_s_preamble) for

beginning transmission. Otherwise we return to idle_state.

- sync_state: in this state we expect synchronization byte. If received we go in

rx_state else turn back to idle state.

- tx_state: this state is composed by six sub states for preamble, synchronization

byte, data, crc and flush transmission. In particular flush transmission acts as

ending sequence. When it’s achieved tx_s_done state radio is put in receiving

mode ,it is posted the task PacketSent() and we switched again to

idle_state.

- rx_state: in this state we receive data byes checking the CRC. When finished

it’s posted the task PacketReceived() and we turn back to idle_state.

Alessio Falchi Chapter 3 – The Berkeley motes environment

 49

Figure 3.2.8-3

Alessio Falchi Chapter 3 – The Berkeley motes environment

 50

The noise floor on a wireless channel is estimated by examining the

characteristics of the channel from the received signal strength indicator (RSSI).

The noise floor is typically centered around a mean with some standard deviation.

Noise floor estimation is further complicated by errors in the receiver packet

detection. Noise floor estimation must be resilient to outliers and noisy signals.

RSSI output of the CC1000 offers a voltage which is inversely proportional to the

sensed level of RSSI in the channel ; for this reason if RSSI measure is major than

a threshold channel is considered idle (see Figure 3.2.8-4)

Figure 3.2.8-4

Of primary concern in achieving high channel utilization in CSMA schemes is the

initial and congestion backoff algorithm. The initial backoff is the time a

transmitter delays from the point that a packet is submitted for transmission to the

first time status of channel is evaluated. The congestion backoff is the time a

transmitter delays after checking the status of a channel and determining that the

channel is busy. The initial backoff affects the maximum load that each node may

offer to the channel. Longer initial backoffs result in less throughput per node and

more nodes to saturate the channel. Long initial backoffs prevent against collision

Alessio Falchi Chapter 3 – The Berkeley motes environment

 51

when responding to synchronized transmissions (such as broadcast messages).

Conventional schemes including Ethernet use and exponentially increasing

congestion backoff but in wireless sensor networks primary concern is power

consumption and secondary one is channel fairness. For example, bulk data

transfers may not want any initial backoff, responses to broadcast messages

requires a random backoff.

Now we consider in detail the backoff time compute. Backoff algorithm is very

simple:

Initial backoff = MSG_DATA_SIZE+ randint(0,127)

Congestion backoff = MSG_DATA_SIZE * (randint(0,15)+1)

where raindint(x,y) is a function that computes a random integer between x

and y

Since maximum message data size (MSG_DATA_SIZE) is 36 bytes and effective

radio rata rate is 19.2 kbps we have :

initial backoff = rand(15ms,68.3ms)

congestion backoff = rand(12.08ms,193.3ms)

where rand(x,y) is a function that computes a random real number between x

and y.

So MAC algorithm for a packet transmission is:

Schedule initial backoff = rand(15ms,68.3ms)

If sMacDelay=0

If !receivedpreamble & RSSI > threshold =>transmit

Else schedule congestion backoff =rand(12.08ms,193.3ms)

