
Toward a Security Architecture for Smart Messages:
Challenges, Solutions, and Open Issues ∗

Gang Xu1 †, Cristian Borcea1, and Liviu Iftode2

1 Department of Computer Science, Rutgers University, Piscataway, NJ, 08854, USA
2 Department of Computer Science, University of Maryland, College Park, MD, 20742, USA

{gxu, borcea}@cs.rutgers.edu, iftode@cs.umd.edu

Abstract

Smart Messages (SMs) are migratory execution units
used to describe distributed computations over mobile ad
hoc networks of embedded systems. The main benefits pro-
vided by SMs are flexibility, scalability, and the ability to
perform distributed computations over networks composed
of heterogeneous, resource constrained, unattended embed-
ded systems. A key challenge that confronts SMs, however,
is how to define a security architecture that protects both the
SMs and the hosts, while preserving the SM benefits.

In this paper, we present a basic SM security architecture
which sets up a framework for the security related issues of
SMs and provides solutions for authentication, authoriza-
tion, and secure SM migration. Since this paper is the first
attempt to investigate the unique security challenges posed
by a system based on mobile code executed over mobile ad
hoc networks, we also discuss the main issues that remain
to be solved for a more comprehensive SM security archi-
tecture.

1. Introduction

Programming user-defined distributed applications for
large scale, ad hoc networks of embedded systems (NES)
poses a significant challenge due to the unique character-
istics exhibited by these networks. We envision future
NES composed of a large number of heterogeneous, re-
source constrained systems, which are able to communicate
through wireless interfaces. These nodes can be mobile, can
fail at any moment, or can even be disposable. Therefore,
NES will be formed ad hoc and their resources will be un-
known a priori. Sensor networks [13, 11] have represented

∗This work is supported in part by the NSF under the ITR Grant Number
ANI-0121416

†The author is also affiliated with AT&T Labs, Middletown, NJ, 07748,
USA

the first step toward this vision, but we expect to encounter
such networks in any aspect of our daily routine (e.g., home
appliances communicating to each other, cars cooperating
to adapt to traffic conditions, intelligent cameras performing
object tracking over large areas).

Recently, we have proposed cooperative computing [5]
as a new distributed programming model for large scale, ad
hoc NES. Applications developed under this model are com-
posed of cooperative Smart Messages (SMs). SMs are col-
lections of code and data that migrate through the network,
one hop at a time, executing at each node. Nodes in the
network support SMs by providing a virtual machine and a
name-based memory region, called Tag Space. The applica-
tions need to execute on target nodes named by their content,
and in doing so they migrate to nodes of interest using appli-
cation controlled routing executed at intermediate nodes.

SMs’ design has been influenced by a variety of other re-
search efforts, particularly mobile agents for IP-style net-
works [14, 9, 19]. We leverage the general idea of code
migration, but we focus more on flexibility, scalability, re-
programmability, and the ability to perform distributedcom-
puting for unattended NES. Section 6 describes the similari-
ties and differences between SMs and mobile agents in more
details.

This paper addresses a key challenge that confronts SMs:
how to define a security architecture, while preserving the
flexibility offered by SMs and avoiding a drastic degrada-
tion of performance. Although the security for both mo-
bile agents [10, 15] and ad hoc networks [22, 12] have been
extensively studied, this is the first attempt (to the best of
our knowledge) to investigate the security issues for a sys-
tem based on code migration over mobile ad hoc networks.
Given the complexity of the problem, our intentions are
threefold: identify the unique challenges faced by such a
system, design an extensible framework for SM security
which provides solutions for the basic, but critical SM se-
curity requirements, and present the open issues that remain
to be solved.

Similar to mobile agents, there are three main issues that

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

have to be solved: (1) protecting recipient hosts from SMs,
(2) protecting SMs from each other, and (3) protecting SMs
from malicious hosts. These problems become more se-
vere for SMs due to the volatile nature of their target net-
works. Unlike traditional mobile agents for relatively stable
IP-based networks, the SMs have to overcome the lack of
an infrastructure or a central authority, specific to mobile ad
hoc networks, which increases significantly the difficulty of
key authentication and group management.

Additionally, SMs have a number of unique features that
influence the design of a security architecture. First, SMs
have a unified data model (the Tag Space) which provides a
single point of access to system resources. Second, no direct
communication is allowed among SMs, and the only com-
munication channel is through the shared Tag Space. Third,
the SM execution is non-preemptive. And fourth, end-to-
end encryption is not possible for all components of an SM
since an SM has to execute at each hop in the path (i.e., it
has to execute at least the routing).

The rest of this paper is organized as follows. We start by
providing an SM overview in Section 2. Section 3 presents
the security challenges faced by SMs. In Section 4, we de-
scribe a basic security architecture for SMs, while Section 5
discusses the open issues and future work. Related work
is presented in Section 6, and the paper concludes in Sec-
tion 7.

2. Smart Messages

Smart Messages (SMs) are migratory execution units
consisting of dynamically assembled code and data sections,
termed “bricks” and a lightweight execution state. SMs ex-
ecute on nodes of interest named by content, which are dis-
covered dynamically using application-controlled routing.
The routing code is executed at each node in the path toward
a node of interest [4].

Since nodes in NES are resource constrained and have
limited functionality, the goal of the SM system architecture
is to keep the support required from nodes in the network to
the minimum, placing intelligence in SMs rather than in in-
dividual nodes. Figure 1 presents the common system sup-
port provided by nodes to SMs: a name-based memory re-
gion, called Tag Space, a Virtual Machine (VM), and an Ad-
mission Manager. The Admission Manager receives incom-
ing SMs, decides whether or not to accept them, and stores
these messages in the SM ready queue. The VM acts as a
hardware abstraction layer for executing tasks generated by
accepted SMs. The Tag Space offers a name-based memory,
persistent across SM executions, and a uniform interface to
the host OS and I/O system.

Each SM has a three-stage life cycle: (1) creation, (2)
migration to a node of interest, and (3) execution upon ac-
ceptance at destination. After completing its execution at

SM Ready
Queue

Admission Virtual
MachineManager

OS & I/O

Tag Space

SM Arrival SM Migration

Figure 1. Node Architecture

a node, an SM may terminate or may decide to migrate to
other nodes of interest.

Since SM tasks do not hold any resources at nodes (e.g.,
files, sockets) and there is no direct sharing among SMs, it
is possible to implement a lightweight migration. The cur-
rent execution control state is captured and migrated along
with the code and data bricks (i.e., the only data transferred
is the one incorporated explicitly by programmers in the
data bricks). To reduce the cost of transferring the code, the
nodes cache the code bricks.

To successfully migrate, an SM must be admitted on the
remote node. The Admission Manager performs admission
control at nodes in order to prevent excessive use of re-
sources (processor cycles, memory, energy, network band-
width). The acceptance decision is based on the estimated
resource requirements presented by SMs, and the VM en-
sures that a task conforms to its declared requirements.

Upon admission, an SM generates a task which is sched-
uled for non-preemptive execution (other SMs can be ac-
cepted, but not scheduled until the current SM terminates).
The execution starts from where it was left before a migra-
tion or from the beginning for new SMs.

The Tag Space is a name-based memory maintained by
each node and is persistent across SM executions. Essen-
tially, each tag consists of a triplet (name, lifetime, data).
The name field is similar to a file name in a file system. The
lifetime specifies the durationafter which the tag will expire.
The data field is applicationdefined. The Tag Space contains
two types of tags: application and I/O tags. The application
tags are created dynamically by SMs. The I/O tags are pre-
defined on nodes and they provide SMs with a unique inter-
face to the local OS and I/O system. The tags can be used
for naming, routing, synchronization, data exchange, or data
sharing among applications.

We have implemented an SM platform by modifying
Sun’s Java K Virtual Machine (KVM). KVM is a virtual ma-
chine designed for mobile devices with resource constraints
and with as littleas 160KB of memory. The SM applications
are written in Java, and the SM API is implemented as Java
libraries using native methods.

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

3. Security Challenges

SMs face a set of security challenges similar to those
mentioned in Section 1 for mobile agents. Solving these
issues becomes even more challenging for SMs since they
have to cope with the highly volatile nature of their under-
lying networks (i.e., mobile ad hoc networks).

3.1. Protecting the host

Host security includes authenticating the owner of the in-
coming SM, enforcing access control based on the authenti-
cation result, and preventing resource depletion.

Identification and authentication. Authentication is
necessary not only because it ensures that malicious SMs do
not distributefalse or useless information in the network, but
also because it is a prerequisite for access control to the Tag
Space. For instance, a node may only want to allow a spe-
cific group of SMs to read certain tags and keep them secret
to all the other SMs. Thus, to fulfill this goal, the host has to
know the ID of each SM requesting access to the Tag Space.
In IP networks, authentication can be supported via a trusted
server such as Certificate Authority in PKI or Key Distribu-
tion Center in Kerberos. However, having a central server in
ad hoc networks is generally not feasible, and therefore the
authentication becomes a more complex problem.

Authorization and resource management. A recipient
host mediates the access to three types of resources: virtual
machine, system resources such as I/O devices, and mem-
ory (i.e., both I/O and memory are accessed through the Tag
Space). In addition to making the authorization decision, the
recipient host must supervise the resource utilization in real-
time to avoid the depletion of resources, which can happen
in case of a Denial-of-Service attack. The protection of the
Tag Space is the liability of the recipient host to cooperative
SMs (i.e., the owner of a tag determines the access policy
and the host enforces it).

3.2. Protecting Smart Messages against each other

SMs can interact only through shared tags. Assuming
that VM is safe and complies with the SM protocols, protect-
ing SMs from each other is boiled down to Tag Space protec-
tion and resource management for competing SMs. The for-
mer was mentioned above, and the latter requires means of
coordinating resource consumption among concurrent SMs.

3.3. Protecting Smart Messages from hosts

Similar to protecting static messages, the protection of
SMs needs to achieve goals such as privacy, integrity, and
non-repudiation. This is especially important because of the

inherent insecurity of wireless networks which are vulnera-
ble to eavesdropping. Unlike static messages that carry con-
stant data, SMs also carry code and dynamic data, which
must be protected as well. Securing constant data is rel-
atively straightforward using cryptographic methods such
as encryption and digital signatures. Code bricks, on one
hand, never change during the life cycle of an SM. There-
fore, ensuring its tamper-proofness or integrity is achievable
through message digests. On the other hand, it is hard if not
impossible to hide any secret about the program logic from
analysis attacks performed by the host where the code runs
(i.e., privacy of the code bricks to the recipient host is un-
available if they need to be executed on the host). Dynamic
data, such as data bricks and state information, has the same
problems with the code because it must be understood by the
recipient host, and differ in that they may change during the
SM execution. As a result, both privacy and integrity are
only possible in hop-by-hop fashion. A key issue is how to
securely exchange keys for encryption and validation in ad
hoc networks where no central trusted server can be relied
on.

4. Basic Security Architecture

In this section, we present a basic security architecture for
SMs, which does not intend to overcome all challenges and
come up with a complete solution. Instead, it sets up an ex-
tensible framework and provides lightweight safeguards to
support basic, but critical security requirements of coopera-
tive computing using SMs. Specifically, this basic architec-
ture addresses the first two challenges discussed in the pre-
vious section (i.e., we do not address the protection of SMs
against malicious hosts, except for eavesdropping). Next
section will cover some of the open issues and will provide
an insight into possible solutions for them.

4.1. Assumptions

We assume that a key exchange mechanism is available.
Secure key exchange over ad-hoc networks is an active re-
search topic by itself [3, 21, 22], and although very challeng-
ing, it is outside the scope of this paper. A simple solution
for medium-scale networks is through an off-band channel.

We further assume that each node carries a public-private
key pair, and that digital signature based authentication can
be implemented. Additionally,each node uses the same one-
way hash function, and each code brick of an SM is identi-
fied by its hash value (i.e., the value returned by applying the
hash function stored at each node on the code itself).

Finally, since our virtual machine for SM execution is
an extension of Sun’s Java KVM, we rely on Java language
to provide both type safety (i.e., strong type checking) and
memory safety (i.e., forge-proof pointers).

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

Name OIDLifetime ACLAIDData

TimestampOGID

{Family, Rights} {Others, Rights}{Code, Rights}{Origin, Rights}{Owner, Rights}

Figure 2. Tag Structure

4.2. Smart Messages Identity

The ID of an SM is a unique number, which consists
of the ID of the originator node (OGID) and a timestamp.
Since an SM can migrate on its own and create or spawn new
SMs at intermediate nodes, its family information might be
needed for access control to the Tag Space. A family of SMs
is defined as all SMs generated from the same SM, called an-
cestor of the family (i.e., the code bricks carried by a child
SM represent a subset of its parent’s code bricks). There-
fore, each SM carries its ancestor ID (AID). In addition, an
SM carries a list of the hash values for all its code bricks,
which are used for more flexible access control to the Tag
Space. For instance, some routing tags may be accessible to
all SMs using the same routing brick. Such an access pol-
icy can easily be verified using the brick level hashes. Also,
these hashes serve as indexes, during migrations, to retrieve
only the code bricks that are not cached locally. Once all this
information needed for authentication and access control is
generated, the sender host digitally signs it.

4.3. Authentication

Before any SM migration, the sender host authenticates
the recipient host (i.e., verifies if the recipient is trusted or
not). The ID, AID, and hash list of the SM are encrypted
using sender’s private key and decrypted by the recipient
with sender’s public key. The SM’s code, data, and execu-
tion state might be encrypted with the recipient’s public key
and decrypted at destination with the private key. This so-
lution, however, can be computationally expensive because
the SM has to be encrypted/decrypted at each node in the
path toward a node of interest (i.e., SMs execute their rout-
ing at each node in the path). Therefore, Section 5 discusses
an approach that allows an SM to pass through the inter-
mediate nodes in an encrypted form (except for its routing
and execution state) and be decrypted only at the node of in-
terest. Upon receiving an incoming SM, the recipient host
checks if the digital signature is valid and made by a trusted
party. Then, the integrity of the SM is verified using the list
of hashes. If any code brick is detected to be modified, the
SM is considered being tampered and thereby not trusted.

4.4. Access Control

A unique characteristic of SMs is that no direct access is
allowed to system resources (i.e., the SMs access both their
data and system resources through the Tag Space). The ad-
vantage of this design is that the Tag Space is a single point
of access control, which can be implemented and enforced
uniformly. Compared to other systems [10], it greatly sim-
plifies the control mechanisms. As described in Section 2,
there are two types of tags: I/O tags and application tags. It
is the host’s responsibility to define policies to protect the
I/O tags and the implementation is straightforward. The ap-
plication tags are the only mean of communication and coor-
dination among cooperative SMs. The SM creating the tag,
called tag owner, determines the access control policy and
delegates the host to enforce this policy on its behalf. Pro-
tecting the application tags ensures that SM executions do
not interfere with each other, and therefore provides a secure
channel for cooperation.

Besides its name, lifetime, and data, a tag incorporates
also the ID of its owner (OID), the ID of its owner’s ancestor
(AID), and the ACL (access control list), as depicted in Fig-
ure 2. Upon creating a tag, the VM sets the OID field to the
ID of the SM that created the tag. Then, the SM establishes
the ACL, which is a matrix of subjects and their access per-
missions. Access permissions for tags are similar to those
for Unix files including read(r) and write(w) (i.e., to execute
a system call, a read or a write is performed on an I/O tag).
The ACL contains five protection domains: Owner, Family,
Origin, Code, and Others. The Owner and Others protection
domains define the access permissions for the owner of the
tag and for any SM, respectively. The group concept, de-
fined as an arbitrary relation over SMs, supports more flex-
ible cooperation, but also requires high overhead of manag-
ing the group membership on-the-fly. Currently, our archi-
tecture does not support dynamic cooperation among totally
independent SMs (this issue is discussed in more details in
Section 5). Instead, we define three protections domains that
allow cooperation among well-defined groups of SMs (i.e.,
Family, Origin, Code). In the following, we present three
scenarios that illustrate these protection domains.

Family cooperation. In Figure 3, all cooperative SMs
originate from a common SM ancestor. For instance, SM1

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

Nc
SM2SM2

SM1SM1

SM1
{Family, rw}

NtNo

T

Figure 3. Family Cooperation

SM2

SM1

SM2 SM2

SM1

NtNo

{Origin, rw}T

Figure 4. Single Originator Cooperation

is created on No, migrates to Nc and creates a child, SM2,
to help it discover a route. Once a route is discovered, SM1
needs permissions to access the tags created by SM2. There-
fore, SM2 sets the ACL to {Family, rw} (i.e., the AID of T
is the same with the AID of SM1).

Single originator cooperation. Figure 4 shows the sce-
nario when the group of cooperative SMs originate from a
common node. SM1 and SM2 are created on node No and
migrate to target node Nt, via different paths. SM1 arrives
at Nt before SM2 and creates a tag T. It also sets the ACL as
{Origin, rw} such that SM2 will be able to access T (i.e., the
unique IDs of SM1 and SM2 contain the same OGID). This
scenario is very likely to be encountered since many nodes
are small devices, such as PDAs or cell phones, owned by a
single user.

Code-based cooperation. In addition to the simple
groups described before, the SM group cooperation can be
coordinated more flexibly based on code bricks. To ensure
cooperation among SMs that are aware of the code used for
data sharing or data exchange, each tag has a list of associ-
ated hash values for certain code bricks. These hash values
define the members of the Code group (they may or may not
belong to the owner of the tag). By definition, an SM is a
member of the Code group if the hash value of its currently
executing code brick belongs to this list. For instance, SMs
using the same routing brick can add the hash value corre-
sponding to this brick to the tag’s list of hash values in or-
der to facilitate route sharing among them. Figure 5 presents
such an example. SM1 creates a tag T and sets the ACL to
{Code=(Cr), rw} to grant access to all the other SMs us-
ing the Cr routing brick. Hence, SM2 has the permissions
to use T. Another example of code-based cooperation is an
SM producer-consumer application (independent SMs, cre-
ated on different nodes, but aware of the code bricks that ac-
cess the shared data) that attaches the hash values of the code
bricks used to share data to certain tags of interest.

SM1

SM2
SM2=(C2,Cr)

SM1=(C1,Cr)

N2

N1
{Group=(Cr), rw}

Nt

T

Figure 5. Code-based Cooperation

4.5. Authorization

Each time an SM tries to execute an operation on a tag,
the VM performs the authorization process. Based on the
credentials presented at authentication and the currently ex-
ecuting code brick, the SM is associated with at least one
protection domain. The request is granted if the SM has the
necessary permission to access the tag in any of the protec-
tion domains it has been associated with.

4.6. Resource Consumption Control

To address the challenge posed by resource depletion at
nodes and to ensure a simple resource management mech-
anism among competing SMs, we implement a contract-
based resource control mechanism. Each SM carries its
resource requirement estimates in a resource table, which
works as a resource contract between the recipient host and
the message. As explained in Section 2, the Admission
Manager decides whether or not to accept the SM, and the
VM enforces the contract. Since SM execution is non-
preemptive, once an SM is admitted, the recipient node
guarantees that enough resources are available for its exe-
cution. Additionally, the non-preemptive execution avoids
the potential problem of multiple SMs competing for re-
sources.

5. Open Issues and Future Work

Security of both mobile agents and ad-hoc networks is
known to be difficult. The combination of the two makes the
solutions more elusive. Therefore, the SM security architec-
ture is far from complete and leaves several open issues.

A first issue is how to achieve key exchange and vali-
dation without a central authority. It is clear that the tree-
like trust which is the foundation of public key infrastruc-
ture [2] is not suitable for mobile ad-hoc environments. In-
stead, the web of trust as first described in PGP [8] seems
more promising. Furthermore, to counter the potential vul-
nerability of having one malicious certificate authority sub-
vert the whole system, fault-tolerance [26] and voting proto-
cols [18] can be applied. A main drawback of these methods
is the overhead in terms of message costs. We plan to inves-
tigate solutions that include achieving asymmetric proper-

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

ties using symmetric cryptography [21], and combining ID-
based and threshold cryptography as suggested in [16].

Given the wireless nature of the underlying network, an
SM has to be protected against eavesdropping. Since most
of the time only the SM routing is executed (i.e., the rest of
the code executes only on nodes of interest), there is no need
to pay the cost of using hop-by-hop encryption/decryption
for all code and data bricks. A more efficient solution would
be to allow the routing brick to encrypt all the other code
and data bricks using a routing-specific algorithm and a key
generated based on the SM ID. Upon arrival at a node of in-
terest, the routing decrypts the SM using the same key. The
routing code and data, as well as the execution state, are still
encrypted with the next hop public key and decrypted with
the private key at destination.

As we mentioned in Section 3, there is no way for a host
to predict on which hosts the SMs will be executed since
SMs are autonomous on their way. The direct consequence
is that it is hard to prevent an SM from being tampered by a
malicious host by simply encrypting the message. Hardware
solutions [1, 20] represent an option. The concern with this
solution is the extra cost of the devices. Complete software
solutions are not known yet, but code confusion and encryp-
tion techniques are investigated [7, 24] to achieve agent se-
curity.

A significant issue that we plan to address is how to sup-
port arbitrary dynamic cooperation among totally indepen-
dent SMs (i.e., a more flexible access control to the Tag
Space is needed). The problem can be reduced to group
membership management in ad-hoc networks. The cur-
rent available protocols rely on either certificate [17] or dis-
tances [23], but they are constrained by the availability of a
certificate authority and provide only limited flexibility for
group description.

Finally, the network as a whole has to be protected
against malicious SMs that consume too many resources
(e.g., an SM that loops forever through the network, but re-
spects its resource contract at each node). We are currently
investigating a market-based approach [10] where each SM
acquires off-line or on-demand a number of tokens which
are used ”to pay” for the resources consumed in the net-
work.

6. Related Work

SMs are influenced by the design of mobile agents for
IP-style networks [14, 9, 19]. A mobile agent names nodes
by fixed addresses, knows the network configuration a pri-
ori, and relies on the underlying network to assure the trans-
port between nodes. Unlike mobile agents, SMs address
nodes by content, discover the network configuration dy-
namically, and are responsible for their own routing. Fur-
thermore, since the resources possessed by nodes are lim-

ited, SMs define a system architecture that requires mini-
mal system support at nodes. SMs apply the general idea
of code migration, but focus more on flexibility, scalability,
re-programmability, and ability to perform distributed com-
putations over ad hoc networks of resource constrained em-
bedded systems.

SMs and mobile agents share several security issues.
Among them is host protection, for which mobile agents
have proposed solutions based on cryptographic authenti-
cation of the agent’s owner. Examples of such systems are
Telescript [25], IBM Itinerant Agents [6], Ajanta [15], and
D’Agents [10]. The existing solutions control the access
to resources on the recipient host by using capability lists
or access control lists (ACL). The former is carried by mo-
bile agents themselves and checked by the recipient host.
Telescript implements this solution. The latter is a pre-
configured policy residing on, and enforced by the recipient
host. D’Agents currently supports access control lists, but
will eventually support both.

Resource management is an issue which was overlooked
and begins to catch the attention of a growing number of
agent systems. For instance, D’Agents defines six resource
managers to monitor and control the usage of consumables
such as CPU time, wall-clock time and number of child
agents, file systems, libraries, programs, network, screen,
and each agent is limited to a finite consumption of these re-
sources.

Protecting an agent from malicious hosts is difficult.
Most agent systems walk around this problem by assuming
that agents run in a trusted environment such as an organiza-
tional network. Ajanta adopts a detective strategy by record-
ing and checking audit trails. In the meantime, a number
of partial solutions are proposed such as time-limited black-
box [7] and encrypted functions [24], but few of them have
been incorporated into real agent systems.

All these agent systems rely on infrastructure support
and do not have the special problems of SMs, such as
key authentication and group management, originating from
the ad-hoc nature of their underlying network. For secure
key exchange, a variety of solutions are proposed by re-
search done in ad hoc networks. For instance, TESLA [21],
a broadcast authentication protocol used in group broad-
casting [22] and routing in ad-hoc networks [12], achieves
asymmetric properties using symmetric MAC functions on
a loosely synchronized network in order to reduce the com-
munication and computation overhead. In [3], the authors
present a password-based multi-party key agreement mech-
anism which extends the idea of Diffie-Hellman two-party
key exchange by ensuring that all group members who share
a password will finally reach an agreement on a shared ses-
sion key. An example of group management in which the
group leader or its delegates hold a group public-private key
pair and issue a membership certificate, which binds a mem-

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

ber’s public key to its identity, is described in [17].

7. Conclusions

In this paper, we have presented a basic security archi-
tecture for Smart Messages (SMs) that provides solutions
for authentication, authorization, and secure SM migration,
while preserving the benefits of SMs such as flexibility, scal-
ability, and ability to perform distributed computations over
large scale ad hoc networks of embedded systems. As an ini-
tial effort to address security in a system based on mobile
code executed over mobile ad-hoc networks, this paper has
described the basic security safeguards to ensure secure co-
operative computing using SMs and identified the main is-
sues that have to be solved for a more comprehensive secu-
rity architecture.

References

[1] http://www.cl.cam.ac.uk/ rja14/tcpa-faq.html.
[2] C. Adams, S. Lloyd, and S. Kent. Understanding the Public-

Key Infrastructure: Concepts, Standards and Deployment
Considerations. New Riders Publishing, 1999.

[3] N. Asokan and P. Ginzboorg. Key Agreement in Ad-hoc Net-
works. In Nordsec’99 Workshop, 1999.

[4] C. Borcea, C. Intanagonwiwat, A. Saxena, and L. Iftode.
Self-Routing in Pervasive Computing Environments using
Smart Messages. In Proceedings of the 1st IEEE Interna-
tional Conference on Pervasive Computing and Communi-
cations (PerCom), March 2003.

[5] C. Borcea, D. Iyer, P. Kang, A. Saxena, and L. Iftode. Coop-
erative Computing for Distributed Embedded Systems. In
Proceedings of the 22nd International Conference on Dis-
tributed Computing Systems (ICDCS), pages 227–236, July
2002.

[6] D. Chess, B. Grosof, and C. Harrison. Itinerant Agents for
Mobile Computing. In IBM Tech Report RC 20010, 1995.

[7] F.Hohl. Time Limited Blackbox Security: Protecting Mo-
bile Agents from Malicious Hosts. In G. Vigna, editor, Mo-
bile Agents and Security, volume 1419 of Lecture Notes in
Computer Science, pages 92–113. Springer-Verlag, 1998.

[8] S. Garfinkel. PGP: Pretty Good Privacy. O’Reilly & Asso-
ciates, 1994.

[9] R. S. Gray, G. Cybenko,D. Kotz, and D. Rus. Mobile agents:
Motivations and State of the Art. In J. Bradshaw, editor,
Handbook of Agent Technology. AAAI/MIT Press, 2001.

[10] R. S. Gray, D. Kotz, G. Cybenko, and D. Rus. D’Agents:
Security in a multiple-language, mobile-agent system. In
G. Vigna, editor, Mobile Agents and Security, volume 1419
of Lecture Notes in Computer Science, pages 154–187.
Springer-Verlag, 1998.

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System Architecture Directions for Networked
Sensors. In Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 93–104, Novem-
ber 2000.

[12] Y.-C. Hu, A. Perrig, and D. B. Johnson. Ariadne: a secure
on-demand routing protocol for ad hoc networks. In Pro-
ceedings of the 8th annual ACM/IEEE International Con-
ference on Mobile Computing and Networking (MobiCom),
pages 12–23, 2002.

[13] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
Diffusion: A Scalable and Robust Communication Paradigm
for Sensor Networks. In Proceedings of the Sixth annual
ACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom), pages 56–67, August 2000.

[14] N. Karnik and A. Tripathi. Agent Server Architecture for the
Ajanta Mobile-Agent System. In Proceedingsof the 1998 In-
ternational Conferenceon Parallel and Distributed Process-
ing Techniques and Applications (PDPTA’98), July 1998.

[15] N. M. Karnik and A. R. Tripathi. Security in the Ajanta
Mobile Agent System. Software - Practice and Experience,
2000.

[16] A. Khalili, J. Katz, and W. Arbaugh. Toward Secure Key
Distribution in Truly Ad-Hoc Networks. In IEEE Workshop
on Security and Assurance in Ad-Hoc Networks, 2003.

[17] S. Maki, T. Aura, and M. Hietalahti. Robust Membership
Management for Ad-hoc Groups. In Proc. 5th Nordic Work-
shop on Secure IT Systems (NORDSEC 2000), 2000.

[18] D. Malkhi and M. Reiter. Byzantine Quorum Systems.
In Distributed Computing, volume 11(4), pages 203–213.
1998.

[19] D. Milojicic, W. LaForge, and D. Chauhan. Mobile objects
and agents. In USENIX Conferenceon Object-oriented Tech-
nologies and Systems, pages 1–14, 1998.

[20] E. Palmer. An Introduction to Citadel - A Secure Cypto Co-
processor for Workstations. In IFIP SEC’94, 1994.

[21] A. Perrig, R. Canetti, D.Tygar, and D. Song. The TESLA
Broadcast Authentication Protocol. In RSA Cryptobytes,
2002.

[22] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar.
SPINS: Security Protocols for SensorNetowrks. In Proceed-
ings of the 7th annual ACM/IEEE International Conference
on Mobile Computing and Networking (MobiCom), pages
189–199, 2001.

[23] G. Roman, Q. Huang, and A. Hazemi. Consistent
Group Membership in Ad Hoc Networks. In Proceed-
ings of 23rd International Conferenceon Software Engineer-
ing(ICSE’01), 2001.

[24] T. Sanderand C. Tschudin. Protecting Mobile Agents against
Malicious Hosts. In G. Vigna, editor, Mobile Agents and Se-
curity, volume 1419 of Lecture Notes in Computer Science,
pages 44–60. Springer-Verlag, 1998.

[25] J. E. White. Telescript technology: An Introduction to the
Language. In General Magic White Paper, 1995.

[26] L. Zhou, F. Schneider, and R. van Renesse. COCA: A secure
distributed on-line certification authority. Technical Report
TR2000-1828, Dept. of Computer Science, Cornell Univer-
sity, 2000.

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

